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Abstract

Network defense fundamentally involves decision-making to minimize
hazards under resource constraints. One clear example is minimizing the
attack surface by patching or neutralizing hazardous software vulnerabil-
ities. We define a normative decision theory for optimal patch planning
by developing the mathematical problem and game theoretic scenario for
defending a network against strategic adversaries. First, we evaluate the
static problem, where the network control state is fixed, and hazard scores
(such as CVSS) are assumed accurate. The defenders optimal patch plan
will maximize the expected hazard removed. We show that the static
problem is a constrained optimization problem reducing to weighted
knapsack, and optimal patch plans are efficiently calculated with bi-
nary programming. The dynamic problem is constructed as a sequence
of static problems connected by reachability conditions of the network
control graph, where each node’s control states are determined by player
actions flipping a node as described in network Flip-it Games. Several
non-intuitive but insightful mathematical observations are detailed for
the dynamic case. For example, while each network state (of control)
yields the best defense (solved locally), the patchwork of local solutions is
shown to be highly discontinuous and sensitive to both network topology
and adversarial actions. We further investigate how the model provides a
foundation for defenders to improve patch planning by learning the attack
preferences of adversaries. We summarize the mathematical insights for
the patch planning problem. We conclude by discussing network design
elements that may further the dual objectives of defending networks while
learning adversarial attack patterns.
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1 Introduction

Vulnerabilities are fault conditions in software that attackers can exploit1. Vul-
nerability patching is the security action of defenders to remove or neutralize
known software vulnerabilities so attackers cannot exploit them.

Because patching is resource-intensive and costly, the amount of patching a
defender can apply is subject to a resource constraint, often far less than the to-
tal capacity needed to address the myriad vulnerabilities a network can present.
Notwithstanding the problem of vulnerability identification (or inventory) and
technical capacity for remediation, the resource limitation gives rise to a consid-
erable planning problem that is the focus of this work. The network defender
must select which vulnerabilities to patch and in what order to minimize attack
surface thereby preventing the attacker from exploiting a defended network.
Additionally, attackers do not announce their intentions, preferences, or plans,
so defenders often plan security actions with zero or partial information about
the vulnerabilities attackers may target.

Hazard scores for vulnerabilities have been suggested to assist defensive ef-
forts, the most well-known being the Common Vulnerability Scoring System
(CVSS). CVSS measures a range of exploitation hazards stemming from each
known vulnerability. The higher the score, the greater the risk that adversaries
could leverage the vulnerability to exploit a defended network. As such, scoring
systems, including CVSS, enable a normative decision-making approach well
suited for expected utility optimization. Under the assumption that the at-
tacker’s preference is proportional to the hazard score, we show that scores can
be used to minimize the attacker’s expected rewards. Calling upon the math-
ematics of constrained optimization for both definition and solution, we define
a constrained optimization problem for the static case describing the local sce-
nario (when network control states are fixed) between a single attacker and a
network defender. The optimization problem reduces to Weighted Knap-
sack. Weighted Knapsack problems are solved (usually efficiently) with
binary programming, a variant of integer programming to render a policy or
patch plan that specifies an actionable sequence of patches to apply and the
resources used to do so.

With the constrained optimization problem made concrete, we gain insight
into the mathematical nature of the dynamic problem where defense goals for a
network can structurally change due to an attack, i.e., a network Flip-It Game
[33, 25]. We consider the Flip-It game to model the state of control for a network
asset. In Flip-It, each time step is a zero-sum value whose ownership resolves to
the last attacker (or player who most recently flipped its control state). Addi-
tionally, control states are unknown to players, who pay to audit/attack a node
to check/take ownership. Viewed alongside Flip-It games, patching is a defensive
action to modulate critical parameters of Flip-It game, amplifying the cost and
attenuating the likelihood of a successful attack upon a node - thus minimizing

1A cyber attack would exploit a vulnerability to gain control of a network node, breach
privacy, steal digital assets, disrupt a critical service, and so on.
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expected loss in zero-sum games. To formalize the dynamic problem, we intro-
duce a control graph whose nodes represent a state of control for the network
and edges describe reachability through a single action (for example, a payer
attack can flip a server node’s control state). The dynamic problem considers
all possible sequences of static games defined by reachability for the subjacent
control graph. Several non-intuitive consequences are highlighted. Not only can
structural goals of patch planning change, but changes can be highly discon-
tinuous and even invert the gains of prior defense actions. To our knowledge,
this study is the first to explore the stability properties of patching strategies
in the dynamic case. From the dynamic case, we discuss implications for the
security problem at large and turn to the notion of learning attack strategies.
Since cyber attackers are likely to have preference structures determining which
vulnerability to exploit and in which order, we ask if the normative theory can
be enhanced by a learning process that actively improves hazard estimates as
experience with attackers reveals their preferences. We provide a foundation for
learning methods that balance the two aims of learning adversarial preferences
and optimizing defenses.

2 Background and Motivation

Strategic resourcing of cyber defense is a critical problem for cyber security [28].
Software vulnerabilities are one of the key sources of concern, as attackers can
deploy exploits against them. With the increasing amount of vulnerabilities
and devices connected to the internet, nearly every business has some version
of the described resource allocation problem required to patch vulnerabilities.
The threat is more apparent for some organizations, such as large technology
companies. Other businesses, for example, a mom-and-pop shop with five com-
puters on their network, may know very little about the cyber defense resource
allocation problem or that it even exists. No matter the scale of the organiza-
tion, it is crucial that defining a network security framework is imperative in
the current cyber domain.

A free and open system known as the CVSS (Common Vulnerability Scor-
ing System) provides a comprehensive assessment of known vulnerabilities for
IT assets on a scale of 1-10 [22]. The CVSS provides an excellent resource for
organizations to understand how serious a vulnerability may be on their net-
works and point to actionable mitigations such as security patches that remove
the exposure. However, CVSS also provides cyber adversaries with a detailed
description of what vulnerabilities could be used to exploit an organization if it
is not capable of patching all known vulnerabilities. CVSS scores introduce an-
other interesting dynamic as their descriptions also can provide an explanation
of how network defenders are patching their vulnerabilities, which can aid cy-
ber adversaries in their following exploits. From an organizational perspective,
listing the full description of a vulnerability may not be desired, and so CVSS
scores can sometimes be viewed and are often criticized as incomplete [30, 32].

The CVSS score value is broken up by three sets of metrics: base, temporal,
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and environmental [2]. The base metric set is broken down into the exploitability
of the vulnerability and the impact the vulnerability would have on a virtual
environment if exploited. The temporal set of metrics deals with how valid the
vulnerability report is and how it can be patched over time. Environmental
metrics mainly focus on the basic principles of cybersecurity: Confidentiality,
Integrity, and Availability[2].

The notion of scanning and patching vulnerabilities has ushered in many
commercialization and open source software efforts with various programs in
the space. Some of the scanners include Nessus vulnerability scanner [6], Open-
VAS vulnerability scanner [9], SolarWinds Security Event Manager [12], Man-
ageEngine Vulnerability Manager [5], Paessler PRTG Network Monitor[10],
Nexpose network risk monitoring tool [8], Tripwire IP360 Agent-Based Vulnera-
bility Management [13], Intruder IO [4], ImmuniWeb AI vulnerability platform
[3], Netsparker [7], PortSwigger [11], and Acunetix [1].

The notion of hazard score refinement has prior art. Gallon and Bascau
in [23] used CVSS scores with attack graphs to re-calculate a damage score.
This broadened the notion of hazard as a function that can be refined based
on network attributes and policies. The dynamic case where network states
can be affected by an attacker was left as an open problem. Here we extend
the prior art by filling in the important and realistic question of how defense
resourcing should be adjusted dynamically when nodes of the network are either
unwillingly or unwittingly ceded to attackers. This is done by considering the
mathematical objectives for minimizing hazards as they depend dynamically on
the control states of the network.

The dynamic scenario of changing control states has been modeled game the-
oretically with FlipIt games [33]. FlipIt considers a network node as a resource
that any player can attack; while attacking has a cost, the benefit is owning the
resource whose reward is proportional to the time it is owned. Players have no
free information as to the actual machine state but can either audit or attack to
determine the control state temporarily. In this paper, we outline the normative
decision theory for defense in a network version of FlipIt [25], and illustrate the
mathematical challenges which arise.

Liu et al. considered how forensic evidence can reveal attack graphs in [26],
indicating learning from prior attacks. The authors used probabilistic attack
graphs and detailed how the inference can be improved as evidence is gained;
however, recommendations for defensive re-prioritization were not made. Attack
graph recovery has been further considered in [16] Other deceptive technologies
such as honey pots have been considered for learning attack graphs [15, 14, 21]
and optimal network hardening by use of attack graphs and deception in [21].
While some defensive measures have been considered, the subject of how to
resource patch planning efforts is left open. Our contribution of analyzing the
mathematical structure of optimal patch planning can provide a sound founda-
tion for the dual objectives of prescribing policy and learning from attackers by
leveraging prior art.
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3 Methods and Materials

3.1 The Static Problem

Let M = {m1,m2, . . .mω} be a set of network nodes (i.e., machines or com-
ponents) controlled by the defender who commissioned, powers, and maintains
the nodes. The network topology is defined by single hop access from node to
node and is given by the edges E ⊂M×M.

Inherent to each machine is an attack surface that is a set of vulnerabilities
that an attacker could potentially use to take control. The simplest game model
has two players, a defender and an attacker, who play for a zero-sum (for each
node for each unit of time). The Attacker selects a vulnerability on the defender
machine, and the attack is successful if the vulnerability remains unpatched.
The attack fails if the defender had patched the vulnerability before the attack.
If the attack succeeds, the attacker receives (the defender loses) the node value
until the defender can take it back by cleaning up the machine. If the attack
fails, the defender remains in control of the node.

Inventory: Let V be a finite (but potentially large) set of commonly known
vulnerabilities (or ports of attack). Note that the vulnerabilities may refer to any
component of hardware or software, service, or procedure; therefore, we model
them abstractly as a set and defer treatment of their complex dependencies for
later. Associated to each machine is a set of commonly known vulnerabilities2

yielding a function:
V :M→ 2V : mj → Vj ,

with Vj = V(mj) being a discrete list of vulnerabilities afflicting node (machine
or component) mj .

Hazards: Associated with each vulnerability is a hazard and cost structure
for remediation. Let

h : V → R+ : vi → hi,

with hi a measure of hazard associated with vulnerability vi. Scoring systems
such as CVSS are based on complex considerations of multiple factors but are
designed to measure a notion of hazard.

Cost Structure for vulnerability patching: Remediation of vulnerabil-
ity vi will have a simple linear cost structure:

ci(n) =

{
0 if n = 0,

bi +min for n > 0.

The cost scales with n, the number of patches applied across the network.
Attack Surface: For a network, the attack surface will refer to the set of

machine nodes and services that are reachable to an attacker. These are most
commonly thought of as servers (e.g., web servers, DNS servers, VPN servers,

2Here it is possible to model information, as differing agents may have different knowledge
of vulnerabilities, to keep it simple we restrict ourselves to work only with commonly known
vulnerabilities such as vulnerability lists that USCert widely tracks
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and firewalls) that interface a private network to the World Wide Web. The
vulnerabilities present on the attack surface are the main ports of entry for an
attacker. The informational asymmetry is most critical on the attack surface.
While the defender privately knows the true state of each vulnerability (i.e., its
presence and patch level), the attacker privately knows their attack capabilities
(i.e., which attacks they are likely to use). The notion of readability can be
modeled by an indicator function: X :M→ {0, 1} : mi → Xi With

Xi =

{
1 if mi is reachable to an attacker

0 otherwise

In the static problem, we can assume the entire network is visible to the at-
tacker, or without loss of generality, the essential problem is played only over
the reachable network.

Attacker Abstraction: Here, we make explicit the assumption underlying
the hazard functions and how it relates to the attacker’s goal. This assumption
will later be helpful when we assume a more realistic proposition that attacker
preferences are unknown by the defender and therefore must be learned. At-
tacker Assumption I: The attacker will select only from known vulnerabilities,
with a frequency in proportion to a commonly known hazard score. Further,
we can assume the attacker will select a reachable computer to attack with uni-
form random probability. The attacker is successful only when they select an
unpatched vulnerability. Assumption I is overly simplistic but is useful for
analysis. The more general case is when the true hazard scores are the private
information of the attacker, and the defender can construct of incremental haz-
ard improvement scheme aimed to converge to that of its attacker’s private and
withheld preferences.

3.1.1 Static Problem and Optimal Patch Planning

The goal of resource-limited defense is to remove a maximal amount of hazard
from the network while satisfying resource constraints.

Letting variables ξij be zero/one variables to indicate whether machine j
has vulnerability i, we can aggregate the network hazards along the axis of
both nodes and vulnerabilities. The node component of network hazard is:
σj =

∑N
i=1 ξijhi with the sum running over the vulnerability index i. The

vulnerability contribution to network hazard is: γi = hini where ni =
∑M
j=1 ξij

with j ranging over the machine index and thus aggregating the number of
vulnerability instances for vi found on the network.

The zero-one matrix ξ are parameters of the specific problem instance having
a total network hazard, Z =

∑M
j=1 σj =

∑N
i=1 γi. A number of nodesM , number

of vulnerabilities N and two cost parameters per vulnerability, as well as a zero-
one matrix N ×M such as viewed in table 1 represent the parameters for all
such problem instances.

Decision Space: Letting ζij (for i ranging over the vulnerability index and
j ranging over the node index) be the zero/one decision variables determining
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patch cost haz vul m1 m2 m3 . . . mj . . . mM v tot

b1 m1 h1 v1 ξ11 ξ12 ξ13 . . . ξ1j . . . ξ1M γ1
b2 m2 h2 v2 ξ21 ξ22 ξ23 . . . ξ2j . . . ξ2M γ2
b3 m3 h3 v3 ξ31 ξ32 ξ33 . . . ξ3j . . . ξ3M γ3
...

...
...

...
...

...
...

. . .
... . .

. ...
...

bi mi hi vi ξi1 ξi2 ξi3 . . . ξij . . . ξiM γi
...

...
...

...
...

...
... . .

. ...
. . .

...
...

bN mN hN vN ξN1 ξN2 ξN3 . . . ξNj . . . ξNM γN

node totals σ1 σ2 σ3 . . . σj . . . σn Z

Table 1: Network hazard Z as the aggregate of hazards arising from each vulner-
ability instance (summing rows in the last column), or arisen from each machine
(summing columns in the last row).

whether or not to patch3 vulnerability vi on machine mj . Letting xi =
∑M
j=1 ζij ,

a hazard reduction of xihi can be achieved with cost ci(xi)
Letting x be the selection of how many instances of each vulnerability to

patch, we can now formulate the constrained optimization problem as:

max
x

Φ(x) with Φ(x) =

N∑
i=1

hixi. (Objective)

Said differently, the inner product between the hazard load vector h and the
decision vector x. This maximization is subject to the constraint:

N∑
i=1

ci(xi) ≤ C (Resource Limit)

.
We refer to the arg-max x as the optimal selection given the constraint C and

this can determine (possibly non-uniquely) a patch plan in the form of zero-one
matrix ζij . An optimal selection can be seen to satisfy: 0 ≤ xk ≤ nk.

Computational Solution The problem of determining an optimal selec-
tion can be reduced to weighted knapsack problems solved with integer pro-
gramming. Equivalently the problem of determining an optimal patch plan is
an instance of binary programming (a special case of integer programming).
Our reduction to weighted knapsack by the Method of Lagrange is found in
the appendix. Briefly, the method of Lagrange reformulates constrained op-
timization into unconstrained optimization problems by using additional slack
variables that are necessarily zero when the objective function is optimized.

3Notice the notation allows fixing a nonexistent vulnerability ζij = 1 when ξij = 0 but the
goal to reduce hazard should avoid any such assignment as a non-productive use of resources.
Therefore we keep the notation primitive and simple.
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The weighted knapsack problem curtails a general NP-Complete decision prob-
lem but admits to pseudo-polynomial time heuristic algorithms and can often
be solved efficiently for random instances [31, 17, 27]. In the implementation,
we use the Julia programming language, and the JuMP [20] module for opti-
mization and linear programming.

3.2 Dynamic Problem

Cyber attacks are characterized by unwilling and often unknown loss of control
of services or network nodes. Attacks are achieved by taking unauthorized con-
trol of a network node, thereby altering the network control state. We represent
network control states by a temporal function Γ that assigns nodes to agent
players. To focus on the essential problem, we assume that only cyberattacks
cause changes to the network control state Γ, ignoring for now other types of
updates, e.g., voluntary transfer of control, leasing, licensing, containers, virtu-
alization, and so forth.

3.2.1 Dynamic Networks and Control

To describe the dynamic problem, we will assume a temporal domain comprised
of regular time steps: T = {t0 + kh : k ∈ {0, 1, 2, · · · }}, The only parameters
for the time domain is an initial reference time t0 and unit time step h = ∆t.
Time step k will refer to t0 + kh.

Let M = {m1,m2 . . .mω} be a set of nodes. The set of edges at time step
k will be denoted by: Ek, with Ek ⊂ M ×M. The time-indexed edge sets
provide a snapshot of node connectivity; this snapshot captures the momen-
tary network topology (including all possible single-hop communications in the
network, whether they are utilized or not). The dynamic network is denoted
by: Nk = 〈M, Ek〉. Without any loss of generality, the essential problem can
be expressed with a network of fixed size (Note 0 in table 1) as machines in-
troduced into and machines removed from the network can be represented with
appropriate isolating edge modifications4.

Within the network, the usual notion of neighborhood applies and can also
be indexed by time; that is, for any mj ∈M: Njk = {m′ ∈M : (m,m′) ∈ Ek}.

As in the static case, V is the set of commonly known vulnerabilities. The
state of vulnerability for any particular node/service/component is extended to
a spatial-temporal function having domain ofM×T (node/services, time step)
and range the subsets of V :

V :M× T → 2V : (mj , k)→ Vjk,

with Vjk enumerating the active vulnerability instances for machine j at time
step k.

Control of nodes: Within the dynamic scenario we consider a set of agents
A = {a1, a2, · · · aν}, and control function Γ : M× T → A that provides the

4Without loss of generality, an isolated machine can be linked into the network at any time
and can be isolated away from the network topology at a later time.
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state of control for each network node, Γ(mj , tk) = a, if node j is controlled by
agent a at time step k. We will use the notation convention that Γjk = i when
Γ(mj , tk) = ai. We note in table 1 (Note 2) that the dynamic nature of the
game allows for control states to change or flip as in FlipIt game [33, 25].

Interior, Boundary, and Contested Zones: At each time step, each
stakeholder controls a portion of the network denoted by Ψek := {j : Γjk = e}.
The interior of control at time step k can be defined as:

Ψ◦ek = {mj ∈M : Njk ⊂ Ψek}.

The interior is the set of nodes that are not immediate neighbors to nodes
owned by other agents. The boundary or Contested zone at time step k is:
∆Ψek := Ψek \ Ψ◦ek. Consistent with the notation introduced in the static
problem Xjk are indicators for reachable nodes at time step k, we will have:
Xjk = 1⇔ mj ∈ ∆Ψk

e for any e (ranging over the index for agents).
Notice that when control states change or flip, this directly affects both

interior and boundary regions of control. As such, how to best prioritize defense
for the dynamic problem, where the control for nodes can change, naturally
arises as an important question.

Attacker Abstraction: Again, we make explicit the assumption underly-
ing the hazard function and its relation to attacker actions.

Attacker Assumption II: An attack occurs at a boundary node chosen uniform
randomly. An attack is successful only when the vulnerability attacked remains
unpatched. A successful attack changes the control state of the network, setting
the attacker to be the controlling agent of the attacked node. An unsuccessful
attack leaves the control state unchanged. Additionally, the attacker will select
a vulnerability to attack in proportion to the hazard score. Further, we will
continue by assuming the network topology remains fixed.

We extend the indicator functions along the temporal axis, let:

ξijk =

{
1 if vi ∈ Vjk
0 o.w.

The node component of network hazard is extended to a temporal function:
σjk =

∑N
i=1 ξijkhi with the sum running over the vulnerability index i. The

vulnerability contribution to network hazard is likewise extended: γik = hinik
where nik =

∑M
j=1 ξijk with j ranging over the machine index to aggregate the

number of vulnerability instances for vi found on the network.
The zero-one tensor ξ summarizes the distribution of vulnerabilities and

determines the total network hazard at time k: Zk =
∑M
j=1 σjk =

∑N
i=1 γik.

The dynamic network problem scenario is summarized in table 2.

3.2.2 Dynamic Problem and Optimal Patch Planning

In the dynamic problem, the defender will have a fixed budget constraint for
each time period. The goal can then be to plan a sequence of patch plans to
remove a maximal amount of hazard. Hazard removed will be measured in
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patch cost haz vul m1 m2 m3 . . . mj . . . mM v tot

b1 m1 h1 v1 ξ11k ξ12k ξ13k . . . ξ1jk . . . ξ1Mk γ1k
b2 m2 h2 v2 ξ21k ξ22k ξ23k . . . ξ2jk . . . ξ2Mk γ2k
b3 m3 h3 v3 ξ31k ξ32k ξ33k . . . ξ3jk . . . ξ3Mk γ3k
...

...
...

...
...

...
...

. . .
... . .

. ...
...

bi mi hi vi ξi2k ξi2k ξi3k . . . ξijk . . . ξiMk γik
...

...
...

...
...

...
... . .

. ...
. . .

...
...

bN mN hN vN ξN1k ξN2k ξN3k . . . ξNjk . . . ξNMk γNk

node totals σ1k σ2k σ3k . . . σjk . . . σnk Zk
control state Γ1k Γ2k Γ3k . . . Γjk . . . ΓMk

Table 2: Network Hazard in the dynamic case is a sequence of reachable static
problems indexed by time step k. The machine control states reflects the agent
controller will depend on time (last row), and this can dramatically alter the
optimization goal for the problem instance at time k depending on who onws
what.

expectation (averaged over all possible control state transitions) over a finite
(i.e., time steps k ∈ [0, T ]) or infinite horizon (time steps k ∈ [0,∞)). We use
the standard Markov Decision Process reward sums, which in general applies a
geometric sum discount factor to future rewards. Letting R(k) be the reward at
time step k (i.e., the hazard removed), and T the horizon, the general objective
is to maximize a discounted sum of the form:

T∑
k=1

δkR(k),

where δ is known as the discount factor.
The objective can be viewed as a sequence of static problems with com-

plex dependencies on prior control states, which in turn depend on prior player
actions. The best future actions may generally be quite sensitive to player ac-
tions. The set (and hence search) of possible outcomes grows exponentially in
time steps. We will only state the constrained optimization function from the
perspective of the defender agent.

Decision Space: Let ζijk be the zero/one tensor or decision variables that
determine whether or not vulnerability vi is patched on machine mj at time
point k. We will assume vulnerabilities do not re-emerge, thereby removing the
vulnerability at time k will ensure its removal at all time points larger than k
(within the horizon [k, T ]) regardless of control changes to the node.

Let xik =
∑M
j=1 ζijk be the number of instances of vi patched at time k, we

have:

R(k) =

M∑
i=1

xikhi.

10



The discounted hazard removed up to T is:

T∑
k=1

δkR(k).

Let cik denote ci(xik), or the aggregate investment to remediate vi at time
step k. Further let S be a service interval (S << T ) where a resource limit
places capacity CS on the resources expended over the service interval. We
denote the time difference operator as ∆, for example ∆cik = ci(k+1) − cik and
∆Scik = ci(k+S) − cik

The constrained optimization problem is:

max
ζ

Φ(ζ) with Φ(ζ) =

T∑
k=1

δk
M∑
j=1

N∑
i=1

hiζijk (Objective)

Subject to the constraints that for each k:

N∑
i=1

∆Scik ≤ CS for k ∈ [0, S, 2S, . . . (bT/Sc)S] (Service Resource Limit)

We refer to the arg-max ζ as the optimal patch plan.
Computational solution: Optimization for this problem with heuristic

methods is planned in our future work. The problem contains several interest-
ing possibilities, including branch and bound, memoization, and finite-horizon
dynamic programming for solving various substructures. Ultimately we are
interested in constructing effective heuristic methods which can iteratively im-
prove expected rewards. We further anticipate the role of learning adversarial
preference to play a significant part.

3.2.3 An Example Dynamic Problem

To illustrate some of the dynamic problem’s mathematical properties, we con-
struct an artificially small but instructive example. We consider seven nodes,
five vulnerabilities, and two agents, and illustrate (in figure 1) several states of
a network’s control graph reachable by attacker actions. Note that temporally
state 1 can transition to state 2 when agent 2 takes control of m2, from state 2
parallel possible transformations are shown, 3a is achieved when agent 2 takes
m3 while 3b is achieved when agent 2 takes m4. Additionally, table 3 clarifies
the state of node vulnerability and boundary for each of these states. Finally,
table 4 summarizes the associated constrained optimization problem for each
defending agent for each state described.

The example helps to illuminate both the essential aspects and challenges
which the dynamic problem engenders. In particular discontinuity in time and
variation in future states.

Temporal Discontinuity: just by changing the boundary in a single step
from state 1 to state 2, vastly different numerical optimization problem results.
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(a) State 1 (b) State 2

(c) State 3a (d) State 3b

Figure 1: Dynamic States of Control for a Network Graph. Two agent con-
trollers (orange and blue) are shown in several states. Nodes are drawn as
circles, the color of the node boundary will indicate the node’s controller, the
interior of a node is colored if the node is within the player’s interior of con-
trol, otherwise it is a boundary node. The contested zone are boundary nodes
where the essential static game is played. The diagram illustrates four distinct
states of control, a control state can transition by flipping a node in the con-
tested zone, dotted lines illustrate the possible routes of attack. State 1 can
be transformed to state 2 by the orange agent flipping control of M2. State 2
can be transformed to state 3a or state 3b if orange agent attacks M3 or M4
respectively.

This discontinuity can be fairly dramatic; for example, the blue player goes
from considering two vulnerabilities to five (see table 4). Further, a hazard
function that places twice the hazard on v3, v4, v5 vs v1, v2 could potentially
shuttle any ongoing efforts to address or patch the security problems from state
1, as something more than twice as important arises from the transition.

Variation of Future States: Notice also that there can be a great discrep-
ancy between possible next states. This suggests the complexity of planning for
the future, even for a single step, may entail vastly differing patch plans depend-
ing entirely upon an adversary’s steps. In our example the hazard (see table 4)
for v3 activated in state 3a and v5 activated in state 3b could be equally high
and dwarf all other concerns.

Additionally, similar discontinuities and variations arise from an unpatched
vulnerability being subsumed by other agents when control of a node is flipped.
Even more curious is the possibility that an unpatched vulnerability could pro-
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Node V1 V2 V3 V4 V5 ∆Ψ1 ∆Ψ2 ∆Ψ3a ∆Ψ3b

M1 1 0 0 1 0 1 0 0 0
M2 0 1 1 0 0 1 0 0 0
M3 1 1 0 0 1 0 1 1 1
M4 0 1 1 1 0 0 1 1 1
M5 1 0 0 1 0 0 0 0 1

Table 3: dynamic boundaries affect the loading coefficients for the static problem

time step Player-1(blue) Player-2(orange)

k = 1 max (v2x2 + v3x3) : c2x2 + c3x3 < C1 max (v1x1 + v4x4) : c1x1 + c1x1 < C2

k = 2 max (v1x1 + 2v2x2 + v3x3 + v4x4 + v5x5) max (v2x2 + v3x3) : c2x2 + c3x3 < C2

: c1x1 + c2x2 + c3x3 + c4x4 + c5x5 < C1

k = 3a max (v1x1 + v2x2 + v3x3 + 2v4x4) max (v1x1 + 2v2x2 + v3x3 + v5x5)
: c1x1 + c2x2 + c3x3 + c4x4 < C1 : c1x1 + c2x2 + c3x3 + c5x5 < C2

k = 3b max (2v1x1 + v2x2 + v4x4 + v5x5) max (2v2x2 + 2v3x3 + v4x4)
: c1x1 + c2x2 + c4x4 + c5x5 < C1 : c2x2 + c3x3 + c4x4 < C2

Table 4: The dynamic sequence of static problems.

vide a bridge back to restoring an agent’s control for a node taken. This sug-
gests a novel variation of Flip-It game where the means to flipping a node can
be added or removed as a new type of action. While in typical networks, phys-
ical control may obviate these possibilities, the prospect of ad hoc networks
may enable such strategies as conceivably rewarding. Still, the effects of prior
patches/investments in network nodes whose control states are fluid can engen-
der the possibility of transferred and shared utility.

The geometry of the static problem variation (as above) are likely to indicate
the following tradeoff. Clonal nodes reduce variation and discontinuities in the
structure of defending a network but can be efficiently attacked by attackers if
they exploit specific vulnerabilities. On the other hand, diverse and Non-clonal
nodes introduce more significant variation and discontinuities but are less likely
to be efficiently exploited by attackers.

3.3 Learning an Adversary’s Bag of Tricks

Node vulnerabilities can be exploited by an attacker to flip control of a sys-
tem. To do so an attacker must select an available vulnerability which remains
unpatched, and further must be capable of exploiting it. There are many vul-
nerabilities and since developing capable exploits for any vulnerability is costly,
attackers will naturally reuse exploits and express pointed preferences to use
vulnerabilities they have used in the past.

Our next goal involves iterative learning better hazard scores based on a
specific attacker. To model the attacker, we will use a preference function. In
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a game such as network FlipIt, the preference function would be private infor-
mation to the attacker but could be learned by other players during repeated
interactions. We consider the defense problem to incrementally improve hazard
scores as the adversaries’ preference distribution can be learned. This learning
objective can improve expected hazard reduction with specific re-weighting of
hazards in ongoing patch planning problems.

Let FN be the set of preference functions over N objects (i.e., vulnerabilities
|V | = N). We will have f ∈ FN if f : V → R+ : i→ f(i) thereby assigns non-
negative preference values to the set of commonly known vulnerabilities would
be a member of FN . Let PN be the space of discrete probability vectors for
N events, that is for p ∈ PN we will have pi ≥ 0 for all i ∈ [1, . . . , N ] and∑N
i=1 pi = 1. We define the probability projector: P : FN → PN : f → µ =

P(f) with µi = f(i)∑N
j=1 f(j)

.

Learning Attacker Preference The single attacker learning problem will
posit a single attacker with constant preference function fA ∈ FN . The learning
goal, starting from any hazard score h0 ∈ FN , is to derive an update procedure
for the hazard estimator: U : hk → hk+1 that converges to fA in the limit as i
gets large and the defender has more interactions with an adversary. A notion of
revelation is required to enable the learning procedure. Defenders often need to
forensically investigate attacks when restoring control to a compromised node.
A forensic investigation can reveal the initial vulnerability exploited [26].

As more experience is gained, the attacker’s distribution can be estimated
with increased precision by forming an empirical distribution of counts revealed
up to time step k. In the appendix, we provide the standard boosting algo-
rithm. Under the hypothesis that the attacker preference is distributed as a
Multinomial distribution, the boosting algorithm forms a converging sequence
of maximum likelihood estimation ρ(k) that will converge to P(f) when f is
the attacker preference function. Further, ρ(0) can be initialized to any hazard
score, such as defaulting to CVSS scores. Details of boosting are provided in
appendix 3.

4 Results

4.1 Problem I: Patch Planning for the Static Problem

We will refer to our method as strategic or optimized patching. To demonstrate
the effect of strategic patching, we generate a testbed of virtual patch planning
problems. The generation algorithm will have fixed parameters, including the
number of nodes and vulnerabilities. A random uniform distribution will de-
termine the number of vulnerabilities per node and select which vulnerabilities
are assigned to each node. Then, using the generated problems, we employ
our strategic patching method and contrast its outcomes with that of oblivi-
ous patching where the choice of which vulnerability to patch is arbitrary (and
selected uniform randomly). The result is a statistical summary of outcomes
measured as counts of vulnerabilities removed and associated hazard reduction.
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By letting one network parameter take on a range of values while others stay
fixed, we can illustrate a response operator curves (ROC) to contrast the two
methods.

In Figure 2(a) and 2(b) we demonstrate the ROC curve for variable con-
straint budget. The fixed parameters of the generated networks are: (M,V ) =
(400, 600); that is, four hundred nodes and six hundred distinct vulnerabilities.
The fixed distributions for the networks are that: hazard scores for each vulner-
ability are distributed discrete uniform5 randomly over [6, 100], costs structure
of each vulnerability will have bi = 0, and mi generated discrete uniform over
[10, 100], the number of vulnerabilities per node is distributed discrete uniform
randomly over [0, 10].

The overall constraint on resourcing to eliminate hazard is the independent
variable (the abscissa), and will take on two hundred equal-distant points in the
interval [0, 100000], for each point we generate 40 sample networks and mea-
sure the outcomes as the number of vulnerabilities removed 2(a), and hazard
removed 2(b). The outcome statistics (90% quantile and median) are plotted
as the dependent variable (the ordinate) for both Strategic patching (blue) and
Oblivious patching (orange). As is expected, the strategic patching is clearly
more efficient at reducing the number of vulnerabilities. The efficiency generally
depends on the distributions (vulnerability hazard, vulnerability cost, vulnera-
bilities per node); however, the strategic patching should be no worse than the
oblivious method (matching performance only in trivial cases for the network
distributions above). One feature of the strategic patching which is clearly ap-
parent in 2(a) is the immediate boost in efficacy with a small budget; while
this tappers off as the budget increases, its clear that a sizable area between
the two graphs highlights the importance of a strategic approach, in particu-
lar when budgets are extremely constrained, this is when efficiencies are most
pronounced when a strategic approach is used.

(a) vuls removal (b) hazard removal

Figure 2: Operational characteristics of strategic patching vs oblivious patching

The resulting efficiencies are premised on the assumption that hazard scores

5The discrete uniform random variable over an interval [a, b] will take on integer values
within the range [a, b].
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are meaningful. Thus the result also underscores the importance of accurate
measures for hazards in a scoring system such as CVSS. Further, one can view
oblivious patching as the extreme of three different scenarios: 1) oblivious patch-
ing to extremely accurate hazard scores, 2) Oblivious patching to extremely
noisy hazard scores, and finally, 3) Strategic patching to extremely noisy haz-
ard scores.

Next, in figure 2(b) we show for the same study as in figure 2(a), the re-
duction of hazard score, for which we can see strategic patching is shown to
be more efficient than before. The efficiency of hazard removal will depend on
the relationship between hazard and cost, and the strategic patching method is
particularly efficient in the presence of vulnerabilities with high hazards having
low patching costs. While we are not familiar with studies on such a relation, we
note that the goal of many automated patch procedures are aimed to decrease
the cost to amplify the effect of strategic patch planning.

Asymptotic efficiences: Next, we fix the resource capacity and explore
the efficacy of the method in the limit of larger problems: population size of
vulnerabilities in 3(a), and network size (measured in the number of nodes)
in figure 3(b). For each, the use of strategic patching outperforms oblivious
patching by sizable fractions. The scenarios closely approximate that of figure
2(a) and 2(b), In both scenarios the resource budget is fixed to 50000 units, in
figure 3(a) the number of vulnerabilities ranges from 4 to 600 while M = 400
remains fixed, and in figure 3(b) the number of nodes varies from 4 to 1200 while
V = 400 remains fixed.

(a) Large number of Vuls (b) Large number of nodes

Figure 3: Asymptotic efficiency of strategic patch planning vs oblivious as the
defense problem scales. (a) in number of vulnerabilities, and (b) number of
nodes.

Folding boundary, and the Dynamic Problem: Below we computa-
tionally evaluate the discontinuity of the static problem over various boundaries
of network control.

To illustrate this, we generate a problem with eight nodes and 200 vulner-
abilities, each of which draws a hazard score from a fixed a discrete uniform
distribution over [6, 100]; similarly, patch cost is discrete uniform over [10, 100]
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and Vulnerabilities per node is Discrete uniform over [1, 40]. We consider all
non-trivial boundaries as the 255 nonempty subsets of the eight nodes. For each,
we calculate the hazard load vector and view these as a heat map in figure 4(a)
below. Next, to consider the discontinuity inherent to protecting various sub-
sets (e.g., boundaries of network), we consider all pairwise similarities between
all pairs of hazard load vectors to produce a histogram showing bulk problem
similarity in figure 1(a). Not surprisingly since all bounded (bounded by largest
hazard) vectors are in the positive orathant of R200 a mode of the distribution
arises and it can readily be seen that solving the static problem for several sub-
sets can be rather dissimilar but not orthogonal either, thus suggesting heuristic
possibilities for the dynamic problem.

In figure 4(a) we view

(a) hazard loads (b) orthogonality

Figure 4: Strategic patching of sub-problems will inherit some structural relation
but also display wide variation. In (a) the hazard load vectors for all 255 subsets
of 8 nodes are shown, the pairwise similarities are shown as a histogram in
(b), on the abscissa zero represents orthogonality while one represents identical
resulting patch plans.

This observation brings up a design problem with two notable extremes: 1)
Clonal design where all nodes are the same delivers the benefit that a single
patch plan may need little revision as an attacker flips the state of control in
various network nodes. The drawback is that a single exploit may be efficiently
used by an adversary to flip the entire network. Thus when an attacker finds
a way in, they can quickly take control of the entire network. 2) Diversity
where each node has a different set of vulnerabilities due to differing configured
software systems. The benefit of such a design is that it increases the burden
for the attacker, who must manage a larger set of exploits; the drawback is that
the defense problem becomes sensitive to the network state of control.

Learning Adversarial Bag of Tricks: The learning algorithm outlined
in appendix 3 is shown to be capable of rapid convergence to an attacker’s
exploit preference. In figure 5 we use a random set of scores for a set of V =
200 vulnerabilities, and we initialize a random adversary preference function
by using a Dirichlet distribution (V, α), where hyperparameter α < 1.0 places
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the majority of the measure on a select few options. We also use a threshold
τ = 0.002 to trim the support of the Dirichlet distribution; this replaces any
probability values lower than τ with zero and reflects the realistic possibility
that attackers will not utilize a vulnerability they are not familiar with. The
outcome of the threshold procedure is then normalized to obtain φ a probability
vector p over the vulnerability options. The learning objective for defense is to
estimate φ, and we measure the estimation accuracy by the cosign distance (or
angle between the estimate and actual). Learning occurs from observations, and
each window plotted on the abscissa will contain a number of observations; these
observations were taken over each window and were used to update the hazard
scores according to our outlined boosting method. As figure 5 indicates, an
adversarial preference can be learned rather robustly. In this case, a distribution
over 58 of 200 vulnerabilities can be learned rapidly having cosine similarity of
.8 at 50 observations and .9 near 75 observations.

An important factor for the learning rate is the size of the repertoire (of
vulnerabilities) that an adversary can attack. This is easiest to understand
by considering limiting cases: An adversary that knows only one attack and
an adversary that knows all attacks and can leverage a uniform random selec-
tion or Dirichlet(200, 1.0). Realistically it’s likely that most adversaries acting
in cyberspace, who are themselves resource bound, will need to select a few
vulnerabilities to learn and effectively exploit.

Figure 5: Learning an adversarial preference is assisted by sparsity
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4.2 summary

When we compare two patching strategies (strategic and oblivious) for a realistic
size data set, we observe that strategic patching (prescribed by our algorithm)
removes vulnerabilities and hazard levels at least as efficiently as oblivious patch-
ing. Hazard scores accuracy is essential. Inaccurate hazard scores with strategic
patch planning may as well be implemented with oblivious patch planning to
obtain the same expected hazard reduction. This further underscores the im-
portance of learning adversarial preferences used by attackers. In particular,
hazard removal can be highly efficient for organizations with smaller resource
budgets. Efficiencies can be amplified by vulnerabilities characterized by high
hazard levels and low patch costs. Thus any engineering or management efforts
that improve the efficacy of patching are helpful. Strategic patching outcomes
express asymptotically efficiency well above that of oblivious patching as the
problem scales in the number of vulnerabilities or the number of nodes. Ad-
ditionally, in the dynamic problem, strategic patch planning can vary greatly
as the network control state graph changes. We also note that design elements
such as topology and diverse vulnerability configurations inherent to the network
become important factors. Learning the preferences of a single adversary facil-
itates a dynamic approach where hazard scores can be initialized to the CVSS
scoring system and refined to match an adversaries preference in a relatively
short time.

5 Discussion and Conclusion

Strategic Patching: The benefits of strategic patching as a solution to the
Static problem have several clear implications. First, the accuracy of hazard
scores is important; when hazards are accurate strategic patching (while always
better than or as good as an oblivious patching strategy) yields dramatic effi-
ciencies for low resource organizations. The return on additional resourcing is
marginally less for organizations that have high levels of resources. In our study,
oblivious planning may also be seen as a proxy for poorly scored or poorly un-
derstood vulnerability hazards. Additionally, the discrepancy between oblivious
and strategic patching helps to emphasize the importance of refining measures
of hazard for particular attackers and highlights the value of having or gaining
such information.

Dynamic Problem: The dynamic problem presents both challenges and
opportunities, not only for heuristic solutions to our stated optimization prob-
lem but also for network design, where designers can potentially modulate or
channel strategic defensive actions to greater efficiencies. We observe that sys-
tem software has largely been designed and fielded as clonal copies, which helps
reduce patch costs but also efficiencies for the attacker. Biological systems
leverage diverse strategies as a natural defense; however, for software and patch
management, such benefits have rarely been achieved due to the increased cost of
patch maintenance required. Given the recent concerns placed on cyberattacks,
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it may be worth reconsidering these network design factors as security require-
ments become more critical. Additionally, the role of deceptive technologies
such as honeypots could play a role in assisting learning and defending deeper
network components or critical assets. The search for optimization strategies
for strategic patch planning in the dynamic problem is not yet complete. While
our model helps to expose mathematical intuition, we plan to aim at the bigger
problem in future work.

Learning an attacker’s strategy: While we demonstrate the possibil-
ity of learning a single attacker strategy, the problem is broadened and more
realistic by considering a normative decision theory for patch planning under
the assumption of multiple attackers. Attackers aware of the defense algorithm
would do better to form fake maneuvers which are aimed to conceal their true
preferences, thus calling on information asymmetrical games [19] to better model
dynamic attackers. But also in defense/evasion games, strategies can enter into
an evolutionary dynamic known as antagonistic chase [18], which mirrors behav-
iors identified in adversarial machine learning [24]. Notwithstanding the usual
difficulty of recovering attacker strategies, attack graph recovery techniques [26],
deceptive honeypots, as well as advanced behavioral monitors may help to im-
prove learning rates for the defense. Still, antagonistic chases imply a limited
shelf life for both defense and offensive strategy as an organizing principle.

6 Conclusion

A model for normative decision-making for patch planning is presented. The
static problem has a solution space over patch plans, and we show the optimal
solution is the plan that removes the largest hazard, thereby denying a max-
imal expected utility for the attacker. We provide a reduction to Knapsack
problem and constrained optimization algorithm to solve patch planning in-
stances. We further define the dynamic patch-plan optimization problem and
how it can be synthesized from a set of static problems stitched together by
the reachability of an underlying network control graph. The dynamic graph
reveals interesting challenges, including discontinuity of solution when the net-
work boundary changes slightly; additionally, our results indicate the possibility
of heuristics to be considered in future work. Noting that attacker preferences
may differ from score systems (such as CVSS), we provide an iterative hazard
score refinement that can start from CVSS and converge to that of an attacker.
The model we present adds mathematical concreteness to defense management
and its dual goals to both learn what to defend while resourcing defense patch
efforts to prevent attacker exploitation.
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Appendix 1: Solution for Static Problem

We provide the code (written in the Julia language) which formalizing the
problem of generating patch planning problem instances. All parameters are
described in code comments in Figure 6. The code can be used to repetitively
generate a large number of problem instances so strategic patching can be com-
pared to oblivious patching.

Next in figure 7 we show how patch planning problem instances (generated
from code in 6) can be re-coded or reduced to instances of a weighted knapsack
constrained optimization problem.

Finally in figure 8 as we provide the high level binary programming routine
which takes as input weighted knapsack instances and calculates a set of binary
values that optimize the weighted knapsack.

Our patch planning algorithm first reduces the network problem instance to
weighted knapsack and then applies the weighted knapsack solver.

Problem Instance Generation

Figure 6: Problem Instance Generation
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Figure 7: Reduction to weighted knapsack is little more than calculating hazard
and cost load for decision variables.

Figure 8: Constrained optimization code.
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Appendix 3: Learning by boosting

We presume a count of vulnerabilities attacked at time k as Ek so that Ek(i) will
be the number of times vi is attacked in the interval [0, k]. Boosting algorithm
such as those used to estimate the multi-armed bandit problem, can be utilized
to efficiently estimate fA with desirable properties. Let h0 be an initial hazard
scoring, and p0 = P(h0). Also let qk = P(Ek). letting pk+1 = (1 − λ)pk + λqk
and telescoping the update function provides:

pk+1 = (1− λ)pk + λqk

= (1− λ) ((1− λ)pk−1 + λqk−1) + λqk

= (1− λ) ((1− λ) ((1− λ)pk−2 + λqk−2) + λqk−1) + λqk

= . . .

= (1− λ)j+1(pk−j) +

j∑
e=1

(1− λ)eλqk−e + λqk

Letting j = k:

pk+1 = (1− λ)k+1p0 + λ(

k∑
e=1

(1− λ)eqk−e + qk)

= (1− λ)kp0 + λ

k−1∑
e=0

(1− λ)eqk−e (*)

If the attacker randomly selects target vulnerabilities in proportion to their
preference function fA, then Ek is distributed Multinomial(P(fA), k), there-

fore E[Ek(i)] = k ∗ fA(i)∑
ν fA(ν) , and V[Ek(i)] = k fA(i)∑

ν fA(ν)

(
1− fA(i)∑

ν fA(ν)

)
.

To show the boosting technique can achieve the learning goal we need to
show pk+1 → P(fA) in expectation, while the rate of convergence is determined
by a central limit theorem for Multinationals [29].

Noting that E[qk(i)] = 1
kE[Ek(i)] = fA(i)∑

ν fA(ν) , we can calculate the expecta-
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tion for pk+1(i) as:

E[pk+1(i)] = E[(1− λ)kp0(i) + λ

k−1∑
e=0

(1− λ)eqk−e(i)]

= (1− λ)kp0(i) + λ

k−1∑
e=0

(1− λ)eE[qk−e(i)]

= (1− λ)kp0(i) +
fA(i)∑
ν fA(ν)

λ

k−1∑
e=0

(1− λ)e

= (1− λ)kp0(i) +
fA(i)∑
ν fA(ν)

(1− (1− λ)k)

For any λ ∈ (0, 1) convergence in expectation with exponential rate for any
initial hazard scores (p0).

The central limit theorem for multinomials can provide tighter bounds on
rate of convergence in probability for our estimate, however we indicate here the
interesting possibility that the rate of convergence for the distribution could also
be modulated by the adversarial selection of distribution. The antagonistic chase
(such as detailed in [18]) that could result would play out between attacker and
defender within a space of Dirichlet distributions over the vulnerability indices.
There are many interesting open questions related to evolutionary strategies.
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