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Abstract

The latency reduction between the discovery of vulnerabilities, the build-up
and dissemination of cyber-attacks has put significant pressure on cybersecu-
rity professionals. For that, security researchers have increasingly resorted
to collective action in order to reduce the time needed to characterize and
tame outstanding threats. Here, we investigate how joining and contributions
dynamics on MISP, an open source threat intelligence sharing platform,
influence the time needed to collectively complete threat descriptions. We
find that performance, defined as the capacity to characterize quickly a
threat event, is influenced by (i) its own complexity (negatively), by (ii)
collective action (positively), and by (iii) learning, information integration
and modularity (positively). Our results inform on how collective action can
be organized at scale and in a modular way to overcome a large number of
time-critical tasks, such as cybersecurity threats.

Keywords— cybersecurity, information sharing, collective action, informa-
tion integration, economies of scales, Malware Information Sharing Platform
(MISP)



1 Introduction
From Computer Emergency Readiness Teams (CERT) established in the nineties [1], to
information-sharing analysis centers (ISACs) [2], to bug bounty programs [3, 4], collec-
tive action has long been used and recognized as key for the gathering, the integration
and the sharing of critical cybersecurity information [5, 6]. The reason for resorting to
information-sharing as a form of collective action stems from the complexity associated
with the continuous and somewhat decentralized (e.g., open source software) adaptation
of hardware and software in information systems [7, 8]. Although the Internet has largely
developed through an open source spirit [9–11] with significant positive externalities [12,
13], information-sharing has remained difficult when it comes to cybersecurity [6]. The
expansion of threats in volume, severity and span has further challenged information in-
frastructures. Hence, it has forced further cooperation through information-sharing [14].
While their utility has been somewhat confirmed by their wide adoption, there is a dearth
of knowledge regarding how these collective action platforms concretely bring performance
when addressing cybersecurity threats. For instance, cybersecurity has become increas-
ingly time-critical and demands ever faster reaction time. Determining the chances that
a threat will be fully characterized on time for security officers to act upon before attacks
actually start has become crucial [15].

Here, we investigate 39, 639 threat events contributed by 485 organizations to a MISP
information-sharing platform [14] operated by the Computer Incident Response Center
Luxembourg (CIRCL). We specifically study how collective action unravels through infor-
mation integration and how it brings significant economies of scale in terms of time needed
to fully characterize cybersecurity threats (i.e., performance). We resort to a multivariate
cross-sectional regression with ordinary least squares method, and we find that (i) the
number of organizations engaged in information-sharing, (ii) their acquired experience in
the events completion, (iii) the proportion of information integration and (iv) modularity
increase performance.

The remainder of this article is organized as follows. Section 2 covers background from
the perspectives of social dilemma, productivity and information integration in collective
action in general and for cybersecurity. Section 3 introduces MISP and presents the data.
In Section 4, we introduce the theoretical framework followed by research hypotheses in
Section 5. Section 6 describes the methodological approach. Results are presented in
Section 7 and discussed in Section 8 before concluding in Section 9.

2 Background
Knowledge sharing in cybersecurity has been considered as a crucial way to overcome
number of vulnerabilities [16] and threats [1]. It is however bound to limiting factors
on the one hand, such as social dilemma, as well as enhancing return-on-scale effects on
the other hand. Here, we review the literature on (i) social dilemma and productivity of
collective action, and on (ii) challenges associated with information integration. We then
review the state-of-the-art research in (iii) information sharing for cybersecurity.

2.1 Social Dilemma and Productivity in Collective Action

According to Olson’s logic of collective action, small communities are more able to provide
collective goods [17]. The central argument is that minor interests will be over-represented
and diffuse majority interests trumped, due to a free-rider problem [18]. This free-riding
effect is stronger for larger groups [19]. For instance, while Dejean et al. [20] found
a positive relation between the size of a community and the amount of collective good
provided, they paradoxically also found a decreased propensity by individuals to cooperate
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as the size of the community increases. Yet, there is overwhelming evidence that large
crowds can be organized in order to establish successful online collective action. Examples
include peer-to-peer networks [20, 21], Wikipedia [22], Stack Overflow [23], communities
of open source software developers [24, 25]. The Dejean et al. paradox may at least
partially resolved by considering that (i) the distribution of effort is highly skewed, with
few contributors providing most effort, and (ii) the dynamics of contribution are highly
non-linear [26–28]. Taken together, these phenomena are associated with positive return-
on-scale of production [26], which may be hindered by coordination costs [29]. Super-
linear productivity has been debated at length in organization and management sciences.
Investigations of how the number of members, temporal dynamics of events generated can
influence positively outputs in way that is greater than the sum of the outputs related
to each element of the system (i.e., exhibiting super-linear growth patterns). Research
has successfully delivered hints to improve the performance of organization [30–33] by
fine-tuning complementary mechanisms within the organization [34], which also foster
innovation [35].

2.2 Information Integration and Modularity

One key aspect of generating return-on-scale in knowledge production is information in-
tegration. The management of information resources has become central to organizations
[36], so that knowledge appears as an utmost strategic resource [37]. For instance, there
is growing evidence in science that greater teams create more impacting knowledge [38].
If knowledge is so important, the fundamental capability of an organization has to be con-
sidered as the specialized knowledge of each organization member. Its integration shall
provide a competitive advantage [37, 39]. With the emergence of virtual exchanges, firms
are increasingly seen as distributed knowledge systems [40]. Yet, new interaction methods
present various new constraints in term of mutual understanding, contextual knowledge
or techniques (e.g., memory, connectivity), which lead to asymmetries in information in-
tegration.

In this respect, the tremendous development of online collaboration platforms, as
tools for governance strategy and knowledge management, highlights the importance of
information-sharing [41]. These platforms promote knowledge transfer by generating mod-
ular collaborative units [42]. One may consider that individuals, or groups of individuals,
composing a subsystem (i) bring added value in their own specific field (differentiation),
in order to (ii) produce a complex good by pooling together this added value (integration).
Following Arrow & Debreu [43], differentiation and integration have been a focal point
in optimizing the structure of organizations [44, 45]. In fact, differentiation considers seg-
ments of a system into subsystems. Each subsystem develops a part of a task, while the
integration focuses on the interactions between these subsystems in order to accomplish
the entire task [39, 46]. Recently, Engel and Malone used the theory of consciousness as
information integration [47] to measure information integration computer systems and on
collaborative platforms [46].

2.3 Collective Action and Information Integration for Cybersecurity

As early as twenty years ago, the first Computer Emergency Readiness Teams (CERT)
and Information Sharing and Analysis Centers (ISACs) have been established as a cen-
tral resource for sharing information on cybersecurity threats to critical infrastructures
[48]. Nowadays, threat intelligence platforms help organizations aggregate, correlate, and
analyze threat data from multiple sources in (almost) real-time to support defensive ac-
tions [49]. Further, open source solutions have been proposed as a counterweight to cyber-
criminals successfully working together [5]. The swift evolution of cyber-threats has forced
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organizations and governments to develop new strategies [50] in order to reduce the risks
of security breaches [41]. Although information sharing is an interesting way to enhance
cybersecurity, it is believed to be thwarted by social dilemma. Without trust, commitment
and shared vision between stakeholders, organizations are reluctant to share information
due to the fear of disclosure, reputation risk or loss of competitive power [51]. As such,
information-sharing can be considered as a marketplace on which transactions occur and
knowledge is transferred [52]. However, human beings have a tendency to not optimize
organizational goals [53] and in the case of collective action might adopt behaviors that
are not conducive to the overall goal of sharing information [6]. As a consequence, cyberse-
curity professionals share probably less information than desirable, leading to a knowledge
asymmetry to the advantage of the attackers [6]. In particular, stakeholders strategically
select their contributions to share (i.e., quantity and quality), leading to truncated and
imperfect information sharing. Yet, specially crafted forms of cybersecurity information-
sharing platforms have developed, such as bug bounty marketplaces. These platforms act
as a trusted third-party between security researchers and software editors [3]. Further,
in cybersecurity, resource belief, usefulness belief, and reciprocity belief are all positively
associated with knowledge absorption, whereas reward belief is not [52]. These empirical
results show that functional cybersecurity information-sharing indeed requires to overcome
social dilemma and goes beyond simple reward expectations, but foremost requires that
information-sharing is efficient in a context that increasingly requires to address time-
critical threats.

3 Data

To understand the nuts and bolts of cybersecurity information-sharing, we resort to MISP
Project,1 a popular open source platform, which is used e.g., by the North Atlantic Treaty
Organization (NATO).2 MISP stands for Malware Information Sharing Platform and
Threat Sharing. Although it carries the word malware in its name, MISP is a threat
intelligence platform on which people can share, store and collaborate on all sorts of in-
cidents (e.g., COVID-19 MISP community,3 but primarily cybersecurity threats. These
threats (i.e., events) are characterized by indicators of compromise (i.e., attributes), which
are contributed by a multitude of organizations.

There are advantages in using MISP as an object of research. First, it is an open
source software. This allows to understand in much detail how the platform is designed
and works. Second, a number of threat information sharing communities use MISP to
share relatively openly their threat intelligence. Here, we use the whole history of a
MISP instance maintained by the Computer Incident Response Center Luxembourg (MISP
CIRCL), i.e., the Luxembourg CERT.

As of February 8, 2022, the MISP CIRCL instance is a community of 1, 908 orga-
nizations (respectively 4, 013 users), which have contributed 39, 639 events, 9, 099, 685
attributes and 3, 786 tags since November 10, 2008. Table 1 shows the ten most involved
organizations. One can see that the number of events contributed by organizations is
highly skewed. Indeed, Figure 1A shows that the complementary cumulative distribution
function exhibits a power law P (XE > xE) ∼ 1/xµE

E with µe = 0.54(4) (c.f., Appendix
B for details on the fitting method). One may additionally note that 1, 423, i.e., around
75%, of organizations do not participate in sharing threat information as a collective good
with the broad MISP CIRCL community. These organizations may however consume in-
formation or share threat information privately within informal sub-groups, which cannot

1https://www.misp-project.org/
2https://misp.ncirc.nato.int
3https://covid-19.iglocska.eu
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be observed. Similarly to P (XE > xE), the distributions of attributes P (XA > xA) and
tags P (XT > xT ) per event, depicted in Figure 2, follow power laws with exponents re-
spectively µA = 0.64(1) (with an upper cut-off around Aupper = 105) and µT = 2.26(6).
It is additionally important to consider that only 22, 423 (i.e., around 57%) events have
been marked as completed, suggesting that either threat analysis is complicated or that
users tend to forget to formally close a large number of events. The cumulative number of
tags NT,cum = 116, 407 used is bigger than the unique tags amount NTU

= 3, 786. Thus,
there is a massive reuse of already existing tags.

rank org ID # users # events contributed percentage of total events
1 1092 8 7,682 19.38%
2 1395 2 5,637 14.22%
3 1960 3 3,214 8.11%
4 2 31 2,939 7.41%
5 1857 3 1,411 3.56%
6 201 8 1,247 3.15%
7 1713 1 1,141 2.88%
8 698 2 1,077 2.72%
9 204 56 1,060 2.67%
10 643 12 998 2.52%

Total 26,406 66.62%

Table 1: 10 of 1, 908 organizations have contributed 66.62% of the 39, 639 events, bringing further evidence
of the heavy-tailed nature of the distribution of contributions by organizations in MISP CIRCL.

We further observe that organizations have joined MISP CIRCL following an almost
perfect linear relation NO(t) ∼ αO · t with αO = 0.79(1) (R2 = 0.99 and p < 10−2)
with 161 organizations initially joining MISP CIRCL instance on September 14, 2015, the
presumed date of official start. Figure 1B, not only shows the almost linear organization
joining rate, but also how many events each organization has contributed over time. One
see that the contribution effort is highly heterogeneous. It is also worth noting that event
contributions started on November 10, 2008, long before the first organizations joined
MISP CIRCL instance. This can be explained in the following way: organizations run
first their MISP instance locally. At some point, they join the MISP CIRCL community
and share at once all their non-private threat intelligence, yet with the nominal event
timestamp, which may well be in the past. Also, it is likely that the linear organization
joining function may be the result of a highly vetted joining process, controlled by CIRCL.

3.1 Reduction of the Completion Time of Events ∆tC

Following the method described in the Appendix B, we can treat the data and, from
them, generate the Figure 3B. As explained in the appendix, by playing with the axis, we
remark that when the axes are in linear-logarithmic scale, the data depict two straight
lines. From this observation, we can deduce that ∆tC(t) follows an exponential decrease
in phase. By applying a binning by month and computing the mean value ∆tC for each
bin, we see a first phase that extends from 2011 to 2020 which decrease slower than the
second phase from 2020 to today. By applying the linear regression on the data, according
to the equation (9), we confirm that ∆tC exhibits an exponential decrease:

∆tC(t) =

{
∼ 10β

1
∆·t, for t ∈ [2011, 2020[,

∼ 10β
2
∆·t, for t ∈ [2020, 2022],

(1)

where
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Figure 1: A. Complementary cumulative distribution function (CCDF) of events per contributing organiza-
tion, which is best described by a power law distribution P (XE > xE) ∼ 1/xE

µE with µE = 0.54(4). The fit
and the goodness-of-fit, provided by the Kolmogorov-Smirnov statistics test, are obtained with the Python
library plfit. B. Curve of the joining organizations (in blue) has followed, after the September 14, 2015,
the presumed date of official start, a linear growth with slope αO = 0.79(1), (R2 = 0.99, p-value < 10−2).
The events contributed by the organizations have been added (in dark gray), the distribution shows the
heterogeneity of organizations efforts.

Figure 2: A. Complementary cumulative distribution function (CCDF) of attributes encapsulated in an
event, which is best described by a power law distribution P (XA > xa) ∼ 1/xA

µA with µA = 0.64(1). B.
CCDF of tags attached to an event which is best described by a power law distribution P (XT > xT ) ∼
1/xµT

T with µT = 2.26(6). The fits and the goodness-of-fits, provided by the Kolmogorov-Smirnov statistics
test, of panels A and B are obtained with the Python library plfit.

– β1
∆ = (−6.32 ± 0.91) × 10−3 is the exponential decrease of the first part

regression and

– β2
∆ = (−7.12± 0.59)× 102 is the exponential decrease of the second part
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regression.

The fit from the linear is of high quality since its Pearson’s determination coefficient
R2 = 0.86 and its p-value < 10−2. Hence, the time ∆tC to complete an event decreases
over time, indicating an improvement of performances of the MISP CIRCL instance.

Figure 3: A. Complementary cumulative distribution function (CCDF) of the completion time ∆tC , which
is best described by a decreasing exponential distribution P (X∆ < x∆) ∼ 10β∆ with β∆ = −0.93(1). B.
Completion time ∆tC of events over the time. The data (blue dots) represents the mean value of ∆tC
binned monthly. The data depict an exponential decrease in two phases, fitted by linear regression (dashed
red line), ∆tC(t) ∼ (−6.32 ± 0.91) × 10−2 for t ∈ [2011, 2020[ and ∆tC(t) ∼ (−7.12 ± 0.59) × 10−2 for
t ∈ [2020, 2022] (R2 = 0.86, p-value < 10−2). The fits and their goodness-of-fits, provided by the Pearson’s
coefficient of determination R2 and the p-value for the Wald test, of panels A and B are obtained with the
Python library scipy.stats.linregress.

4 Theoretical Framework

Collective action is thought to be a fundamental tool to overcome sprawling and increasing
time-critical cybersecurity threats [54–56]. Yet, despite numerous studies of online plat-
forms fostering collective action [57, 58], very little evidence has been uncovered linking the
organisation of collective action with group performance as an output. By investigating
the MISP threat management platform run by the Computer Incident Response Center
Luxembourg (CIRCL), we have a unique chance to better understand how collective action
is organized to tackle time-critical cybersecurity threats.

We posit that the performance of collective platforms devoted to the resolution of time-
critical tasks at scale, such as MISP, pull from progressively building a knowledge and
action environment, made of organizations, which contribute to the resolution of events
and, at the same time, bring returns of scale through (i) gaining own experience and (ii)
sharing and integrating knowledge, which is associated with increased performance. We
further posit that, in order to offset decreasing return-of-scale due to increased groups size
and coordination costs [29], the organization of collective action must adapt in a modular
way [59], as it has already been witnessed in several open source projects [60, 61].

We test our theory of collective action for tackling time-critical tasks, through a set of
three hypotheses and six sub-hypotheses to understand how time completion performance
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is achieved for events, given (i) the nature of event, (ii) the collective action environment
and (iii) the knowledge integration environment at the time of event arrival (c.f., section 5).
We proceed with an exploratory approach to test our theory by resorting to a multivariate
cross-sectional regression with ordinary least squares method (c.f., sections 6 and 7).

5 Hypotheses

To explain how event completion time has evolved, we consider their intrinsic nature,
i.e., number of attributes and tags required to characterize events, the overall collective
action environment and how knowledge is integrated. We hypthesize that these three
overall factors significantly influence collective action performance, in terms of improved
completion time in characterizing threat events.

5.1 Event Complexity Hinders Performance (H1)

First, events are not all equal: while some are fairly simple and require limited input in
terms of attributes and of categorization with tags, others are more complex and require
more effort. As shown on Figures 2A and 2B, the distribution of respectively attributes
and tags is heavy-tailed: while a majority of events have a limited number of attributes
(resp. tags), some carry a large numbers of attributes (resp. tags), presumably affecting
the time required to complete the characterization of an event. Hypothesis 1 states:

H1: The number of attributes and tags per event negatively influences performance.

5.2 Collective Action Improves Performance (H2)

We consider how collective action at scale affects positively or negatively performance.
Namely, there are conflicting views on whether having more stakeholders (e.g., contribu-
tors, organizations) joining collective action is likely to enhance or hinder performance
[17, 25, 27–29]. Yet, to exist and be sustainable, collective action necessarily needs to
bring economies of scale of some form, which in turn would attract more contributors.
Conversely, having more participants should bring marginally increasing performance.
Therefore, we aim to test the following hypothesis:

H2a: The overall performance increases with the number of organizations participat-
ing in collective action.

Yet, as already shown in [62], the ongoing collective action workload is likely to affect
negatively performance, by increasing completion time. Therefore, our second hypothesis
states:

H2b: Given a focal event, the number of simultaneously open events decreases
performance.

5.3 Knowledge Integration Increases Performance (H3)

Having more contributors does not necessarily imply economies of scale [29]. Economies
of scale may rather be generated by “the whole is more than the sum of its parts”
mechanisms [25], which may stem from productive integration of information [46, 63,
64] as a single entity [25] or through the efficient communication of several modular
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sub-systems [65, 66], which in turn may even mitigate free-riding [59]. Here, we recognize
that the first form on knowledge integration occurs through experience as learning
within organizations [67], and one may expect that an organization having accumulated
experience in characterizing a large number of threat events is likely to perform better on
new events, therefore :

H3a: More experienced organizations solve events faster.

On MISP instances, collective action goes beyond coordinating time-critical tasks. As
people and organizations contribute, a large corpus of knowledge is built as a library of
events, attributes, and tags. In turn, by design of MISP software, this information can be
easily reused to quickly characterize new events, proposing matching possibilities according
to the preliminary entries.

Hence, the reuse of knowledge simplifies the emission of attributes and the knowledge
is integrated by the creator of the new events. These new events are thus composed of a
certain percentage of inherited attributes which are likely to impact positively performance:

H3b: The reuse of tags and attributes from existing events contributes positively to
performance in the completion of new events.

The capacity of an entity to integrate knowledge is tightly related to its modular
organization [47, 59, 60]. As MISP clusters of events or attributes, called “Galaxies”,
were progressively introduced and developed on MISP CIRCL, we have an opportunity
to test for modularity. We therefore formulate the following hypothesis:

H3c: Modularity in collective action positively influences performance.

By testing these three hypotheses (and six sub-hypotheses), we expect to gain robust
insights on how collective action on MISP brings performance in terms of characterizing
time-critical cybersecurity threats.

6 Method

We proceed to validate our theory through the testing of three hypotheses, divided in six
sub-hypotheses (c.f., Section 5). For this, we specify an econometric model with completion
time as the main dependent variable representing the key performance indicator in our
posited theory of collective action for tackling time-critical threats (c.f., Section 4).

We define the following set of events,

Ωe = {e|e ≤ Ne, e ∈ N∗}, (2)

where Ne corresponds to 22, 423 events, which have explicitly been marked as completed
(i.e., with field Analysis = 2, see section 3). For each event, we define ∆tC,e the completion
time of events as

∆tC,e = tf,e − tc,e, (3)

with tc,e the event creation date and tf,e the last event modification.
To determine the relation between the dependent variable, i.e. the completion time

∆tC,e for the events, we proceed to a multivariate cross-sectional regression [68]. Specif-
ically, we investigate if completion time ∆tC,e for the events can be explained by the
selected explanatory variables. The corresponding Python variable is CompletionT. For
each event e, the multivariate cross-sectional regression writes:
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log(∆tC,e) = ζ +

Nk∑
k=1

·
Ne∑
e=1

κk · log(Zk,e) + εe, (4)

with:

– ∆tCe : time completion for event e,
– ζ : constant,
– Nk : number of explanatory variables,
– κk : autoregressor parameter corresponding to Zk,e,
– Zk,e : k-th explanatory variable for event e,

– εe : error term (i.e., log(∆tC,e)− log(∆̂tC,e)).

This multivariate cross-sectional regression is performed with the ordinary least squares
(OLS) method. The choice of this model is adapted to deal with data without time
series, which is the case here. Then, the explicated and explanatory variables are linked
with a set of points in time. This set of points in time is given by the creation tc,e of
the different e and contains 22, 423 elements, corresponding to the number of completed
elements Ne considered. Thanks to this model, it is easy to consider all chosen independent
variables. However, due to the heavy-tailed behaviour of the variables and their difference
of magnitude (see Section 3), we transform the variables in logarithm in base of 10 [69].
However, the results are indicated as a percentage change of ∆tC,e when Zk,e varies by a
certain percentage [69].

We specify the following explanatory variables in relation with the formulated hypothe-
ses (c.f., Section 5). To test hypothesis H1 (i.e., event complexity hinders performance),
we resort to two explanatory variables:

– NA,e: the number of attributes per event e. The corresponding
Python variable is AttrCount, which is expected to positively influence
CompletionT (i.e., reduce performance).

– NT,e: the number of tags per event e, The corresponding Python vari-
able is NTags, which is expected to positively influence CompletionT (i.e.,
reduce performance).

To test hypothesis H2 (i.e., collective action improves performance), we resort to two
explanatory variables:

– NO,e stands for the number of organizations listed on MISP CIRCL at the
creation tc,e of event e. The corresponding Python variable is CumOrgs.
CumOrgs is expected to negatively influence CompletionT (i.e., increase
performance) and to demonstrate the overall benefits of collective action
for tackling time criticial threats (H2a).

– Esim,e is the number of simultaneously open events on MISP CIRCL at the
creation tc,e of event e. The corresponding Python variable is SimEvents,
which is expected to positively influence CompletionT (i.e., reduce per-
formance) and to show that collective action performance is bound to
circumstantial operational constraints associated with time as a scarce
resource (H2b) [62, 70].

To test hypothesis H3 (i.e., knowledge integration increases performance), we resort
to three explanatory variables:
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– EC,e takes into account the number of already completed events by the
organizations at the creation tc,e of a new event e on their behalf. The cor-
responding Python variable is CumCompE, which is expected to negatively
influence CompletionT (i.e., increase performance) (H3a).

– I%A,e is the inherited percentage of attributes per event e. The correspond-
ing Python variable is InhPer, which is expected to negatively influence
CompletionT (i.e., increase performance) (H3b).

– NG,e counts the number of galaxies created on MISP CIRCL instance
at the creation tc,e of the e. The corresponding Python variable is
NbGalaxies, which is expected to negatively influence CompletionT (i.e.,
increase performance) (H3c).

– NEG,e considers the number of events in its corresponding aforementioned
galaxy at the creation tc,e of a new event e in this galaxy. The correspond-
ing Python variable is NbEventsinhisG, which is expected to negatively
influence CompletionT (i.e., increase performance) (H3c).

The pairwise correlations of the dependent variable and the independent ones provide
the correlation matrix (see Table 2).
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log(∆tC) 1.00
log(NA,e) 0.11 1.00
log(I%A,e) -0.07 -0.27 1.00
log(NT,e) 0.07 0.08 -0.59 1.00
log(Esim,e) 0.74 0.06 0.01 0.04 1.00
log(NO,e) -0.23 -0.03 0.05 0.01 0.02 1.00
log(EC,e) -0.60 0.023 -0.02 0.01 -0.53 0.33 1.00
log(NG,e) -0.16 0.01 -0.07 -0.02 -0.42 0.19 0.23 1.00
log(NEG,e) -0.12 0.00 -0.07 0.07 -0.11 0.42 0.43 0.14 1.00

Table 2: Correlation matrix of dependent and explanatory variables.

With the explanatory variables of our model being defined, we are in position to
formulate the econometric model by developing the equation (4):

log(∆tC,e) = ζ + κNA
· log(NA,e) + κI%A

· log(I%A,e) + κNT
· log(NT,e)

+ κEsim · log(Esim,e) + κNO
· log(NO,e) + κEC

· log(EC,e)

+ κNG
· log(NG,e) + κNEG

· log(NEG,e)

+ εe (5)

Model validation is performed as follows. When handling a multivariate regression,
one must pay particular attention to multi-collinearity between the Zk’s, which may dis-
tort the model. For that, the variance inflation factor (VIF) resulting from the regres-
sion of the explanatory variable Zk on the other explanatory variables which provide
R2

k, must be computed. The VIFk is then given as VIFk = 1/(1 − Rk
2) and must be

< 10 [68]. The stability of the variance has to be examined, namely by studying het-
eroskedasticity, which is ruled out if the p-value obtained from a White test is lower than
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a threshold α = 0.05 [68]. The computation steps are performed with the Python libraries
statsmodels.api.OLS for the regression, statsmodels.stats.outliers_influence for
the VIF and statsmodels.stats.diagnostic for the White test.

7 Results

In order to establish evidence of collective action as an efficient way for tackling time-
critical cybersecurity threats, we have resorted to data the MISP instance, which is run
by the computer Incident Response Center Luxembourg (CIRCL). We used a multivariate
cross-sectional regression analysis of completion time (i.e., performance) required to char-
acterize a threat event with both event related and collective action explanatory variables.

Dep. Variable Completion Time
Method OLS F-Stat 2.251× 103

No. Observations 22423 Prob (F-Stat) 0.00
R-squared 0.413 Log-likelihood −5.030× 104

coeff std err
Const 16.505(∗∗∗) 0.135

CountAttr 0.230(∗∗∗) 0.011

InhPer −0.089(∗∗∗) 0.014

NTags 0.951(∗∗∗) 0.090

CumOrgs −0.346(∗∗∗) 0.024

CumCompE −0.629(∗∗∗) 0.006

NbGalaxies −0.083(∗∗∗) 0.019

NbEventsinhisG 0.160(∗∗∗) 0.005

Skew -0.011 Durbin-Watson 1.302
Kurtosis 2.833 Cond No. 76.4

Table 3: Results of the ordinary least squares (OLS) regression with the explained variable CompletionT
and the explanatory variables: CountAttr, InhPer, NTags, CumOrgs, CumCompE, NbGalaxies and
NbEventsinhisG, namely the number of attributes per event, the inherited percentage of attributes per
event, the number of tags per event, the cumulative number of organizations at the creation of the event e,
the number of already completed events by the organization at the creation of his new event e, the number
of galaxies at the creation of the event e and the number of events populating these galaxies at the creation
of the event e. For each explanatory variable, the autoregressor coefficient (in the column coeff), as well as
its standard deviation (in the column std err) are provided. The significance of the explanatory variables
is given by the p-value and its threshold, i.e. p− value < 0.1 : (∗), < 0.05 : (∗∗) or < 0.01 : (∗ ∗ ∗) and the
goodness-of-fit by the R-squared. The other added information are not necessary for the evaluation of the
model.

The regression results are shown in Table 3. Overall, the regression model is robust and
explains 43% of the variance (R2 = 0.413). Testing for hypothesis 1, the model shows that
indeed event complexity measured by the number of attributes CountAttr and tags NTags
influences performance negatively, i.e., event characterization completion time is increased.
Hypothesis H1 is supported. Regarding how collective action improves performance (H2),
the model shows that overall performance (i.e., completion time reduced) is positively
associated with the number of organizations participating in MISP: Hypothesis H2a is
supported. Hypothesis H2b could not be tested as a result of unexplained strong multi-
collinearity between CumOrgs and SimEvents. Turning to Hypothesis 3 (i.e., knowledge
integration increases performance), we find that more experienced organizations perform
better in reducing event completion time. Hypothesis H3a is supported. We also find
that the proportion of attributes that an event e inherits from previous events, i.e., from
the MISP CIRCL knowledge base, also positively influences performance. Hypothesis
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H3b is supported. Finally, testing for hypothesis H3c, i.e., modularity, we find mixed
results. While the number of MISP Galaxies, measuring the number of modular sub-
systems, influences positively performance, the number of events recorded in MISP Galxies,
measuring to some extent the intensity of modularity, influences performance negatively.
Hypothesis H3b is only partially supported.

We have checked for multi-collinearity of the explanatory variables. We computed the
variance inflation factor (VIF) for each explanatory variables, which happens to be all
smaller than 10. This implies that there is no evidence of multi-collinearity between the
selected explanatory variables (c.f., Table 4). We also controlled for heteroskedasticity, i.e.,
a possible instability of the variance by performing a White statistics tests. We obtained
p-value < 10−2, which implies that there is no heteroskedasticity in our model. The post-
analysis for the VIFs and the White statistics test completely validate the used model and
its results.

Explanatory variables Notation VIF
Number of attributes per event NA,e 5.15
inherited percentage of attributes per event e I%A,e 1.67
Number of tags per event e NT,e 1.03
Cumulated number of organizations at the creation of e Fcum,e 6.73
Cumulated number of completed events at the creation of e EC,cum,e 3.28
Cumulated number of galaxies at the creation of e NG,cum,e 1.12
Cumulated number of events in galaxies at creation of e NEG,cum,e 2.02

Table 4: Computation of the variance inflation factor (VIF) for the explanatory variables of the econometric
model. The values of the VIF allows to detect the presence of multi-collinearity between the considered
variables. As all values VIF < 10, there is no evidence of multi-collinearity between the explanatory
variables. These results validate the econometric model.

8 Discussion
Organizations are increasingly encouraged to cooperate and share information to
overcome cybersecurity threats. Investigating how collective action unfolds and brings
performance on information-sharing platforms is necessary as cybersecurity threats have
become increasingly time-critical. In other words, not only collective action shall be used
to characterize threat events, it also must be used to characterize threat events before
attacks unravel [56]. Here, we have investigated collective action on MISP, a popular
open source threat intelligence platform, from the perspective of the time required to
fully characterize an event as an objective function to be optimized (i.e., completion
time or performance). We found that performance is negatively associated with event
complexity (Hypothesis 1) and positively associated with collective action (Hypothesis
2). Indeed, as the number of organizations taking part to information-sharing on the
MISP instance studied increased, the time required to complete the characterization
of events decreased. This result informs on positive returns on scale, which necessar-
ily exist given the increased adoption of MISP as well as other information-sharing
platforms. Nevertheless, the mechanisms at work generating these economies of scale
have remained unclear. We considered the perspective of knowledge integration [47]
as the collective action process at work to generate the “the whole is more than
the sum of its parts” [25]. With hypothesis 3, we tested and verified organizational
learning, knowledge integration and modularity as positively associated with performance.

While event completion time is associated with explanatory variables pertaining to
event complexity, collective action, and knowledge integration, we could not establish
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causality. Although this is a significant limitation to our model, we have organized our
multivariate cross-sectional regression in a way that minimizes the risks of uncovering
spurious dependencies between the explained variable on the one hand and the explana-
tory variables on the other hand. And the fact that all our explanatory variables are
significant (at the exception of SimEvents, the number of simultaneously open events on
MISP CIRCL at the creation, which had to be excluded from the model), shows that
our proposed theory on collective action for tackling time-critical tasks is comprehensive
and altogether robust. Yet, the regression analysis approach remains exploratory. Indeed,
it does not provide reliable information on which precise collective action mechanisms
generate positive returns on scale. Building and testing fine-grained causal models of crit-
ical cascades in collective action, inspired from e.g. [25, 27, 28], may surely help better
understand the activity, learning, knowledge integration and modularization paths of con-
tributing organizations, as well as how they handle time as a particularly scarce resource
[70]. Indeed, when tackling large amounts of time-critical tasks, such as cybersecurity
threats or incidents, contingencies necessarily appear [62], which may affect coordination
between contributors, and as a result performance, either in a transient way or by trig-
gering long-term instability through cascades of disorganization. At the meso-scale, our
model does not account for affinities between events, organizations and the combined com-
monalities of events and organizations. Indeed, as for number of collective action online
platforms, modular Galaxies on MISP show that some sub-communities of organizations
have specific goals when tackling cybersecurity threats. These specific interests deserve
further scrutiny. For instance, are the organizations contributing to a given MISP galaxy
active in the same industry? If not, why do they share interest in similar threats? Consid-
ering MISP (or other information-sharing platforms) from the perspective of threats, we
may investigate kinship between threats, as they most often share attributes. Questioning
and perhaps predicting how attributes are “transmitted” from one event to others is likely
to be key to anticipate threats and guide organizations in their search of (respectively
contributions to) threat information. It may even help decide what information should be
shared and with whom.

Finally, our results show that completion time as an objective function in collective
action concerned with time-critical tasks can be optimized. This opens further perspectives
for computational social science research. One may envision to use machine learning
in order to recommend personalized precision strategies that optimize the organization
of collective action and knowledge integration. This may help make best use of time
as an increasingly critically scarce resource, especially in face of a looming tsunami of
cybersecurity threats.

9 Conclusion
Information-sharing in cyber-security has become an increasingly common collective ac-
tion practice. Yet, its benefits have so far remained unclear. We have investigated MISP, a
commonly used open source threat sharing platform, and we found how building a critical
mass of contributing organizations and of knowledge to be integrated from past threats
brings significant economies of scale. Through collective action, security researchers over-
come the challenge of characterizing cybersecurity threats, which appear to be increasingly
time-critical. We find that performance, defined as the time needed to fully characterize
a threat event, is (i) negatively influenced its own complexity, (ii) positively influenced by
collective action, and (iii) positively by learning, knowledge integration and modularity.
Our results also inform more generally on how collective action can be organized online
at scale and in a modular way to overcome a large number of time-critical tasks.
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Appendices

A MISP: Description and Data Retrieval

A.1 Detailed Description of MISP

MISP is a partially de-centralized system of communities (e.g., NATO MISP, CIRCL
MISP). interacting more or less together across MISP instances. A MISP instance consists
in the installation of the MISP software and the community database in which community
members share and collect data. Similarly to GIT,4 organizations work on their own
instance and synchronize with remote instances. According to their sharing setting (i.e.,
your organization only, community only, connected communities, all communities or
defined sharing group), community members have access to a certain amount of data.

Based on investigation needs or reports found in the newspapers or on specialized web-
sites, the user creates an event to contextualize and encapsulate the related attributes
(i.e., IoCs) and their properties (e.g., an IP address). All events have some general
properties of the event, such creation date, aforementioned sharing level, threat level (i.e.,
1: High, 2: Medium, 3: Low, 4: Undefined), analysis level (i.e., 0: Initial, 1: Ongoing, 2:

4https://git-scm.com/
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Complete) and a general description. The creator of an event can choose if this event is
published on the remote instance or remains internal to the organization. Then, when the
event is created, some attributes are added to populate this event. The event attributes
refer to intrusion artifacts or methods used by attackers. These attributes provide details
and they are characterized by their type (e.g., filename|md5, sha256, etc.) and their
belonging to a category (e.g., Antivirus detection, Targeting data, etc.), putting them
in the context and justify then its attribution to its corresponding event. To add an
attribute related to an event, global information such as its category, its type and its
distribution, either the same as for the event or its own rule, is required, as well as two
important text fields: value and contextual comment. The "value" field stores the
data we want to add, e.g. an url leading to a report, while the “comment” field allows
complementary information about the attribute. Moreover, it is possible to allocate one
tag or more to an event in order to simplify the read and the classification of this event.
These tags can follow the MISP taxonomy, i.e. a fixed machine-tag vocabulary, or be
created by the users according to their needs.

On the platform, events, attributes, organizations and tags are associated to their own
identification (ID) number and their creation are timestamped, as well as the publication
and the last update of an event.

As an open-source platform, MISP relies on voluntary action. On the one hand, its
members can create or exchange content. On the other hand, these same actors can obtain
new insights or possible response elements from the community regarding cyber-threats
of interest. To organize interactions and to create information-sharing incentives for the
participants, MISP offers several aforementioned sharing levels through a comprehensive
sharing model. Users can select to whom they want to share information among the
following levels from the most restrictive to the most open. Regardless of access and to
guarantee the quality of the shared data, only organizations that created an event have
the permission to modify this event. However, each user has the possibility to submit his
own suggestions to change an event created by others, who can then accept or reject the
proposal.

Moreover, the experience of older MISP versions has shown that the time to fill the
fields and a complicated web interface introduce some frictions. For this purpose, a free
text importer has been deployed, so that data can be copied and pasted into the intended
field. Further, MISP implements a heuristics-based algorithm, which helps users to match
events or event attributes with events or attributes from events already in the data base.
However, let us added that the matching is never performed automatically, and goes
through human supervision.

A.2 Data Retrieval

To investigate our hypotheses, we have to curate the main dataset by considering only the
closed events, i.e. the events with an analysis level equal to 2, meaning “complete”.

To retrieve the data, we have followed the user guide5 provided by the MISP CIRCL
instance. We used the PyMISP module to download data in .json format file. The
main dataset contains one file per event. These event files contain the attributes (see
MISP core format6), as well as the name and the ID of the concerned organizations.

5https://www.circl.lu/doc/misp/book.pdf
6https://www.misp-standard.org/rfc/misp-standard-core.html
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However, due to the policy of the MISP CIRCL instance, we cannot disclose the names
of these organizations and present no interest and have no influence on the obtained results.

B Exploratory Analysis of the Data Set

B.1 Probabilistic Distributions

In order to understand the mechanisms handling on the MISP platform, we want to
investigate the distribution of our data, we have to present the selected variables and
explore the distribution associated with these. In some cases, we are able to investigate
the probabilities distribution. Hence, if we consider a random variable X with a probability
density function (PDF) fX(x), the cumulative distribution function (CDF), FX(x) is given
by:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t)dt. (6)

Then, thanks to the formula (6), the complementary cumulative distribution function
(CCDF) F̄X(x) can be written as follow:

F̄X(x) = 1− FX(x) = P (X > x). (7)

This CCDF provides a rank ordering of the selected variables.

B.2 Fit of the Data

Before we start fitting our data, a visual analysis can be performed. Then, in any case,
by varying the scale of axis – double linear, linear-logarithmic or double logarithmic –
depicting our data, we are able, if our data follow approximately a straight line in one of
cases presented below, to fit the data. The logarithmic scales are considered in base 10.

B.2.1 Double Linear Scales

By considering two vectors of data −→x and −→y and plotting the data contained in −→y (y-axis)
in function of the data in −→x (x-axis) in linear scale for the axes x and y. If the displayed
data shows an approximate straight line, that means that each element yi of the vector −→y
is given by the relation:

yi = a · xi + b, (8)

where a is the slope of the straight line and b, its intercept. Thanks to the relation
(8), we are able to compute the estimated ŷi, a and b by applying a least-square linear
regression. To validate the parameter obtained from the linear regression, we need
to establish the goodness-of-fit with these parameters. For this type of simple linear
regression, we use the Pearson’s coefficient of determination R2 and, to reinforce the
results of R2, we perform a Wald test with a chosen level α = 0.05 to define if these
two samples are significantly identical or not. Then a value |R2| ≈ 1 implies a strong
correlation between −→x and −→y , while a p-value < α for the Wald test allows us to affirm
that the parameters of the fit are good and the estimated −̂→y are significant according to −→y .
With these indicators, we can thus say that our data have a linear behaviour which follow
a straight line with slope a. a is the most important parameter for our analysis, then b
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can be neglected To produce the linear regression on our data and to compute R2 and
the p-value < 0.05 for the Wald test, we use the Python library scipy.stats.linregress.

B.2.2 Linear-Logarithmic Scales

Following the same process as above, excepted that we put the y-axis in logarithmic scale.
If data −→y in function of −→x depict a straight line, we can write the relation as:

log(yi) = a · xi + b, derived from
yi = 10(a·x) · 10b,

(9)
(10)

where, a is the slope or the increasing factor and b the intercept or an additive
constant depending on the relations (9) and (10). In this case, the data describe an
exponential shape. As this process is not used in this article, we don’t develop completely
this, it remains nevertheless important to pursue with the last case.

B.2.3 Double Logarithmic Scales

Considering the same method than the two aforementioned cases, we plot the data con-
tained in −→y versus −→x on logarithmic x- and y-axis. In the case where the data behave
itselves like a straight line we are then able to deduce the relation:

log(y) = a · log(x) + b, derived from
y = xa · 10b,

(11)
(12)

where a is the slope or the exponent and b is the intercept or a multiplicative constant
according to the equations (11) and (12). From the relation (11), we can determine the
estimated values for elements ŷi, a and b.

From here, we have to distinguish the two following cases:{
a ≥ 0 or
a < 0

(13)

In the case of a ≥ 0, we treat a power function given by the equation (12). The
fit can be, as for the double linear case, obtained by performing the least-square linear
regression. Then, the goodness-of-fit is given by the Pearson’s coefficient of determination
R2 and the p-value < 0.05 for the Wald test. The results are computed the Python library
scipy.stats.linregress.

In the case of a < 0, we are in presence of a power law. Due to the presence of the
logarithm on both sides of (11), we cannot apply a least-square linear regression, because
this method and the similar ones return systematic errors for common conditions. For this
reason, it is impossible to trust the results [71]. Instead of this method, we estimate the
parameters a with the method of maximum likelihood after a quadratic approximation
to the log-likelihood to deal with our discrete values. In our analysis, the parameter
b is not relevant and we don’t need to estimate this. To determine if it really handles
of a power law, we proceed to a Kolmogorov-Smirnov test, attempting to minimize
the distance between the estimated parameters and our data. If the p-value from the
Kolgomorov-Smirnov is smaller than the chosen threshold α = 0.05 , we can affirm that
our data follow a power law [71]. Sometimes, the fits don’t fit very well with a power law
distribution that is why we have to investigate other heavy-tailed distributions like the
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log-normal (L) or the Weibull (W) (i.e., stretched-exponential) distributions, for which
we can define the goodness-of-fit with the previous Kolmogorov-Smirnov test and its
p-value. However, with approximately same results, the power law is privileged because
it is determined by one parameter instead of two parameters for the two aforementioned
distributions.
The computations in this part have been widely inspired from the works of A. Clauset &
al. and done with Python libraries such that plfit for the powerlaw and implemented
according to the works of A. Clauset & al. for the other distributions [71].

B.2.4 Goodness-of-fits Summary

The results for the fits presented in this article (i.e., Figure 1, 2 and 3), as well as their
goodness of are detailed in the below Table 5.

Fig Model Estimated Parameter(s) Goodness-of-fit p-value Quality
1A PL a µatt = 0.64(1) 6.43× 10−2 < 10−2 (***)

1B PL a µtags = 2.26(6) 1.52× 10−1 < 10−2 (***)

2A PL a µevents = 0.54(4) 1.51× 10−1 < 10−2 (***)

2B LR b βorgs = 0.79(1) 0.99 < 10−2 (***)

3A LR b β∆ = −0.93(1) 0.97 < 10−2 (***)

3B LR b β1
∆ = (−6.32± 0.91)× 10−2 0.86 < 10−3 (***)

β2
∆ = (−7.12± 0.59)× 10−2

Table 5: Goodness-of-fits summary. The fits are generated by the Power Law a and ordinary least squares
(OLS) Linear Regression b models. The goodness-of-fit are obtained with the Pearson’s coefficient R2 a and
the p-value of a Wald test for the Linear Regression a model and with the Kolmogorov-Smirnov statistic
test, also providing the p-value, for the Power Law b model. The results are computed with the Python
libraries scipy.stats.linregressa and plfit b.
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