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robust statistical inference and study the relationship between information leakage attack rate,
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service industries are affected by opportunistic financially driven attacks.
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1 Introduction

This paper investigates the association between the research and development (R&D) intensity

in an industry and the rate of information leakage cyberattacks. The relationship is studied

under several statistical settings. The article’s primary goal is to answer a simple question: are

research-intensive industries more likely to become victims of information leakage attacks?

Cybersecurity has become one of the major global threats. Thousands of businesses and

millions of people are becoming victims of cybercrime every year. The cost estimate of cyber-
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crime to the global economy surpassed $1 trillion in 2018 and almost doubled to $2 trillion in

2020, making it roughly 2% of global GDP. With a predicted annual growth rate of 15%, this

number is expected to reach $4-5 trillion by 2025 (Juniper Research, 2019). Recent reports sug-

gest that more than two-thirds of global cybercrime costs were associated with data breaches:

intellectual property theft, cyberespionage and financially motivated crimes (McAfee, 2020).

Around 32% of companies experienced data breaches in the United Kingdom in 2019 with

total economic losses estimated around £27 billion, £16.7 billion of which was associated with

industrial espionage and intellectual property theft (IBM, 2020). The average cost of the data

breach incident in the UK reached £3.5 million (DCMS, 2020).

The data breaches are generally divided into two big groups: targeted and opportunistic

(or untargeted) (National Cyber Security Centre, 2015). The former is closely associated with

intellectual property theft and industrial espionage, while the latter is often associated with

more financially driven attacks that take advantage of unidentified victims’ vulnerabilities to

obtain easily monetised data. However, it should not be treated as a rule: some targeted

attacks could be aimed at consumer records, while some opportunistic attacks might extract

trade secrets from the victims.

The study focuses on targeted attacks and theorises that they might be adopted as a means

of unfair competition. An underdog in an R&D race can choose to obtain competitors’ know-

how or corporate secrets utilising a cyberattack. Similarly, clients databases can be targeted by

cyberattacks in sales driven competition. According to Oxford Economics (2014), every fifth

company in the UK experienced a data breach, with 61% and 59% of companies reporting the

loss of competitive advantage due to the loss of intellectual property (IP) and commercially

sensitive data, respectively. Stealing know-how or client records could be a cheap, efficient and

relatively safe method of gaining a competitive edge in an R&D race (Crete-Nishihata et al.,

2018).

The study employs a tailored dataset based on aggregated survey data from Eurostat to

investigate this claim. The data contain cyberattack rates and plausible proxies for research

intensity and customer data use.

The research estimates fixed effects fractional outcome regression models with the country

and industry controls. The estimation technique is superior to alternative methods (e.g. ordi-

nary least squares (OLS) or Tobit models), as the chosen dependent variable is the information

leakage attack rate in a given country in a given industry ∈ [0, 1]. However, the coefficients

estimated by the fractional outcome model are not directly interpretable. The study utilises

marginal analysis to estimate average marginal effects, which can be interpreted similarly to
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classic OLS coefficients.

The dependent variable is estimated separately against three research intensity proxy vari-

ables that capture distinct groups of R&D personnel : (1) a share of all R&D personnel in

overall employment in a given country in a given industry, (2) a share of researchers in over-

all employment in a given country in a given industry, and (3) a share of research support

personnel in a given country in a given industry. The choice of the research intensity proxies

follows conventional economic growth theory, where research personnel is often employed as an

essential part of the ideas output function (e.g. Porter and Stern, 2000).

Due to the secrecy of information leakage attacks, the available data possess two major

challenges. Firstly, the dataset has a considerable share of partial observations, leading to biased

estimates if not treated carefully. Therefore, fractional outcome regression analysis is backed

up by the multiple imputation (MI) technique, a hybrid Bayesian-frequentists approach that

allows for unbiased estimates in the presence of partial observations. Secondly, the dependent

variable aggregates both targeted and untargeted attacks.

Data Breach Investigations Report (DBIR) 2011 suggests that targeted attacks are gener-

ally aimed at intellectual property and trade secrets, which are the results of research activity

(Verizon Business, 2011). On the contrary, untargeted (opportunistic) attacks are responsible

for 90% of compromised records, customer financial data, and credentials. Thus, the relation-

ship between the rate of information leakage attacks and research intensity cannot be studied

without controlling for opportunistic attacks. To tackle the issue, I use an additional Client

Resource Management (CRM) proxy variable representing the end-user data reliance in a given

country in a given industry to absorb the variance associated with opportunistic attacks. The

additional variable provides an opportunity to consider another (secondary) research question:

are data reliant industries susceptible to information leakage attacks?

The theory is tested with univariate and multivariate fractional outcome models estimated

on Eurostat data. Univariate models demonstrate a strong association between information

leakage attack rate and research intensity regardless of a chosen proxy. The share of research

support personnel demonstrates a more than fourfold larger marginal effect than the other two

proxies. Moreover, it is the only proxy that maintains a statistically significant coefficient after

controlling for opportunistic attacks. Therefore, the share of R&D support personnel might be

a better proxy to capture the value of innovative ideas. The discussion on this matter can be

found in Subsection 3.1.2.

The multivariate estimation reveals that the CRM proxy variable has a statistically signif-

icant coefficient. By employing the multivariate model specified with both research intensity
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and end-user data reliance proxies, the study distinguished two positive associations potentially

linked to targeted and opportunistic attacks.

To back up the findings, the study additionally performs multivariate estimations for six

subsamples of different technological environments: all manufacturing industries, high-tech

manufacturing industries, low-tech manufacturing industries, all services, knowledge-intensive

services, and less knowledge-intensive services. Consistent with the proposed causal mechanism,

information leakage attacks in high-tech manufacturing industries are strongly associated with

the research intensity proxy while demonstrating no association with the data reliance proxy.

On the contrary, the information leakage attacks rate in knowledge-intensive service industries

does not demonstrate any association with the research intensity proxy while showing a strong

association with the data reliance proxy.

Therefore, the results suggest that research-oriented manufacturing industries are prone to

fall victim to targeted information leakage attacks (potentially industrial espionage). Mean-

while, knowledge-intensive service industries are more likely to experience opportunistic finan-

cially driven attacks. However, this can be considered solely as supporting evidence favouring

the proposed causal mechanism. Establishing an actual causality will require a better and more

complete dataset, which is currently unavailable.

The rest of the paper is built as follows. The next Section shortly discusses related literature.

Section 2 summarises main hypotheses. Detailed information on the chosen methodology and

data can be found in Section 3. Section 4 reports the results and Section 5 offers conclusions

and discussion.

1.1 Related literature

There have been limited studies on the economics of information leakage attacks. Arguably,

the most famous series of empirical papers were written by Moore and Clayton (2007, 2008)

and Moore et al. (2009). The authors studied a continuous arms race between banks and

cybercriminals. Criminals created websites that impersonate banks and steal sensitive customer

data, while banks’ security services (or specific take-down companies hired by banks) were

trying to hunt them down and minimise losses. The authors derived valuable insights and

provided recommendations for defenders against phishing attacks. For example, they recognised

that even though a phishing website might be known to some defending parties, it might be

unknown to the party with the actual take-down contract. Therefore, the authors concluded

with a recommendation for defenders to cooperate and share information. The authors also
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found that some banks were targeted way more frequently than others, although they did not

explain this phenomenon in the original series.

In the following paper, Moore and Clayton (2011) attempted to research how cybercriminals

choose their targets. To launch a phishing website, cybercriminals must compromise websites

to host a phishing page, malware or other harmful content. They concluded that foes often

used quite simple techniques. For instance, they utilised search engines to identify possible

victims – websites with common (and usually obvious) security holes. The authors claimed

that the simplicity of compromising the website is one of the main drivers of victim selection.

This finding, however, is only applicable to opportunistic attacks.

Ransbotham (2010) compared the durability of open and closed source software. The indus-

try has an ongoing debate on which approach leads to less vulnerable software. The open-source

code is being developed and tested by many programmers and testers. In theory, exposure to a

broader number of developers leads to discovering a more significant number of bugs, glitches,

and vulnerabilities compared to a closed source with restricted access to the code. However,

by analysing two years of data on intrusion detection, Ransbotham found that open source

software was targeted more frequently, and exploits were being developed faster. He suggested

that it happened due to the relative ease of accessing the source code. Therefore, the type of

software an enterprise uses could influence its exposure to information leakage attacks.

A significant body of research is devoted to the quantification of cyber risks in a race for

better cybersecurity insurance models. Such quantification is a fundamental risk management

challenge that has been addressed by scholars, insurers, and businesses (see the comprehensive

survey in Bardopoulos, 2020). While this body of literature is not per se directly related to the

presented study, it offers some insights into the methodologies and techniques, which might be

useful in analysing information leakage attacks.

An early attempt to quantify cyber risk was made by Hoo (2000). The author employed

utility theory to analyse companies’ decision trees based on computer security surveys. The

study identified that the main factors behind the cyber risks are the company’s wealth indices

and probabilities of the security events associated with decision trees. It proposed to use the

customer base as a main measure of exposure. However, the main factors were defined following

the anecdotal evidence from a small sample survey analysis.

Similarly, Mukhopadhyay et al. (2005) also used decision trees and utility theory in an

attempt to build an insurance risk premium. The main exogenous inputs were assumed to

be insurance claims’ frequency and severity (without further specifications). The theoretical

model, however, could not be verified empirically due to unavailability of data.
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Böhme (2005); Böhme and Kataria (2006) presented the first insurance models that could

be supported by empirical data. Böhme (2005) argued that industrial IT infrastructure might

intervene with the development of a prober cyberinsurance market. The author recognised

that cyber risks of insureds are correlated due to the dominance of a few IT platforms, which,

in turn, lead to correlated losses. The author has explored the conditions upon which the

insurance market would be feasible. Böhme and Kataria (2006) expanded the previous work by

investigating the correlation of cyber risks within and across firms based on “honeypot” data

(Leita et al., 2008).

Liu et al. (2007) used a regression analysis to investigate the relation between computer

virus incidents and cybersecurity measures (e.g. information security policy, human cultiva-

tion). Additionally, they have explored the correlation between the breach probability and the

number of email accounts. They found statistically significant results suggesting that contin-

uous investment in cybersecurity can significantly mitigate cyber risks related to breaches due

to a virus exposure. The data, however, did not allow for causal inference.

Another empirical paper was presented by Wang and Kim (2009). The authors used time-

series regression analysis to study cyber attacks on a country level. Particularly, the authors

studied the spatial autocorrelation of cyberattacks and the effects of joining IT conventions.

They found evidence of autocorrelated cyberattacks and concluded that physical boundaries

must be considered an essential factor in designing cybersecurity regulations.

Herath and Herath (2007) presented a premium pricing framework for assessing the potential

financial losses based on the observed distribution of the number of compromised computers.

The empirical work was based on survey data and analysed by the means of copula. Data

defects were identified as one of the main limitations of the approach (the data had only 15

observations).

Innerhofer-Oberperfler and Breu (2010) conducted a qualitative study in order to identify

the main indicators for cyberinsurance. They interviewed 36 field experts and reduced their

statements to the set of 94 indicators ranked according to their relative importance (subjectively

chosen by experts during the post-interview questionnaire). In their study, “processing sensitive

data with high confidentiality requirements” and “existence of worth-protecting know-how,

patents and otherwise valuable information” are ranked third and fourth respectively – right

after the indices of dependency on IT systems. The empirical model presented in this paper

attempts to quantify those qualitative findings.

Overall, the main body of the literature discusses the measurement of information leakage

attacks effectiveness, technological drivers of cyberattacks and espionage, and offers various
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ways of cyber risk quantification. However, it says little about the determinants of exposure to

information leakage attacks. This study attempts to contribute to this question by researching

at least one of the possible drivers of the phenomenon – the research intensity.

2 Hypotheses

I construct two hypotheses to test for the possible associations of the rate of information leakage

cyberattacks1 with (1) research intensity and (2) industries’ reliance on the end-user data. The

first hypothesis concerns the association of research intensity with the rate of information leak-

age attacks. The association is believed to be linked to targeted attacks that are predominantly

aimed at IP and corporate secrets.

Hypothesis 1 Higher research intensity in the industry (independent variable) is associated

with an increase in the information leakage cyberattack rate in the industry (dependent variable).

Simultaneously the study examines the association between information leakage attacks and

end-user data reliance.

Hypothesis 2 Higher reliance on end-user data in the industry (independent variable) is as-

sociated with an increase in the information leakage cyberattack rate in the industry (dependent

variable).

3 Empirical strategy

3.1 Data

The research uses a tailored dataset that is based on three publicly available sets from Eurostat:

1. Structural business statistics (SBS) dataset that covers the structure, conduct and per-

formance of the industry, construction, services and trade (Eurostat, 2010c);

2. Science, technology and innovation dataset which covers statistics in the fields of science,

technology and innovation (Eurostat, 2010b);

3. Digital economy and society dataset covers all aspects of the usage of Information and

Communication Technologies (ICT) by individual households and businesses (Eurostat,

2010a).

1Definied as the rate of cyberattacks that result in the theft of information.
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1 Belgium 9 Spain 17 Hungary 25 Slovakia

2 Bulgaria 10 France 18 Malta 26 Finland

3 Czechia 11 Croatia 19 Netherlands 27 Sweden

4 Denmark 12 Italy 20 Turkey 28 UK

5 Germany 13 Cyprus 21 Poland 29 Iceland

6 Estonia 14 Latvia 22 Portugal 30 Norway

7 Ireland 15 Lithuania 23 Romania 31 Macedonia

8 Greece 16 Luxembourg 24 Slovenia 32 Serbia

Table 1: List of countries included in the study

All selected datasets are survey-based, and aggregate responses from 148, 000 enterprises

categorised by year, country, and economic activity according to the second revision of NACE2

(European Commission, 2008). However, datasets have a different granularity of aggregation.

For instance, the SBS dataset has detailed information on every economic activity present in

the NACE classification, while the two others utilise industry aggregates that group several

similar economic activities. Therefore, to make merging possible, datasets were aggregated to

the highest common level, that of the Digital economy and society dataset. Countries that

are included in the research are summarised in Table 1. Figure 1 illustrates the geographical

distribution of the countries included in the study and the corresponding average shares of

companies that experienced cyberincidents in each country. A list of industry aggregates can

be found in Appendix A.1. Country and industry dummies constitute two sets of control

variables.

Note that even the finalised dataset includes only variables for 2010 due to the fact that “Se-

curity Incidents and Consequences” surveys included in “Digital economy and society dataset”

was conducted only for 2010 and 2019; thus, 2010 was the only year where all three datasets

overlap. The partial observations constitute 36% of data, which I address by utilising a multiple

imputation approach described in Subsection 3.2.

2NACE stands for ”Nomenclature Statistique des Activités économiques dans la Communauté Européenne”.

It is a standard European system for classifying firms by the industrial sector.
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Figure 1: Geographical distribution of the countries included in the study. The countries are

colour-coded according to the average share of enterprises that experienced information leakage

attacks.

3.1.1 Dependent variable

The dependent variable – the rate of information leakage attacks (Bij), represents the share

of the enterprises which experienced cybersecurity incidents that resulted in the disclosure of

confidential data due to intrusion, pharming or phishing attacks in a given country (i) in a

given industry (j).

The variable has a right-skewed distribution, which suggests the usage of the logarithm to

normalise it (See Figure 2). However, zero observations constitute 39.9% of observations, which

means that log-transformation might significantly affect the results.
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Figure 2: Dependent variable histogram

There is no reasonable way of determining the stolen type of data (e.g. personal records,

financial information, blueprints). The variable aggregates all the possible cases regardless of

the original motive of the breach. To shed some light on the issue, the research refers to 2011

Data Breach Investigation Report (based on The Veris Community Database (VCDB)), which

analyses the majority of known data compromise incidents in 2010 (Verizon Business, 2011).

The report divided cyberincidents into two big groups: (1) targeted and (2) opportunistic

attacks. Around 20% of all discovered breaches can be affiliated with targeted attacks, which,

however, correspond to less than 10% of all compromised records (e.g. credentials, card details,

personal data) in 2010. Those attacks are disproportionally aimed at more specific types of

data that are not generally stolen in bulk: IP and corporate secrets. As later reports suggest,

the primary motivation behind targeted attacks is industrial espionage - that is, the stolen data

are used to achieve a competitive edge on the market (Verizon Business, 2020).

Opportunistic breaches constitute around 80% of cases. Victims of those attacks are cho-

sen due to the exploitable vulnerabilities they exhibit (e.g. SQL Injection-vulnerable websites)

rather than their business activity. Opportunistic attacks are predominantly financially moti-

vated and are responsible for 90% of compromised records, including customers financial data,

personal information, and credentials that might be quickly sold on the black market.

It should be recognised that the actual rate of intellectual property and corporate secrets

theft is likely larger than reported. Financial fraud detection remains the most effective method
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of discovering a breach. However, IP and corporate secrets are not generally involved in financial

identity theft. It is then reasonable to assume that a substantial share of targeted attacks has

never been discovered.

It is worth mentioning that the research focuses on the cyberattacks performed by external

actors. While there is no doubt that an insider threat is a common problem in modern compe-

tition, the external actors are the predominant source of information leakage attacks. External

actors were responsible for 92% of all reported data breaches in 2010 (Verizon Business, 2011).

I leave the discussion of insider threats for another occasion.

3.1.2 Independent variables

As neither the exact form of the targeting mechanism nor the actual form of the ideas output

function is known, the research tests the central hypothesis using three proxy variables. Proxy

variables represent shares of interlayers of organisations’ R&D personnel and resemble the

variables used in macroeconomic and economic growth literature to model ideas output (Porter

and Stern, 2000; Jones, 2003; Coe and Helpman, 1995). The variables are derived according to

the Frascati Manual3 and are defined as follows (OECD, 2018):

1. R&D personnel (rperij ) is the share of all persons in overall employment in a given country

in a given industry who engaged in R&D as well as those who provide direct support for

the R&D activities (e.g. R&D managers, technicians);

2. Researchers (rresij ) is the share of professionals and researchers in overall employment in

a given country in a given industry who are engaged in the conception or creation of

new knowledge, conduct research and improve or develop theories, models, techniques

instrumentation, software or operational methods.

3. Technicians and other R&D supporting personnel (rsupij ) represents the share of persons

in overall employment in a given country in a given industry who provide direct services

for the R&D activities (e.g. technicians, R&D managers, and administrators).

Note that the R&D personnel variable can be expressed as a sum of latter two variables,

rperij = rresij + rsupij . The industrial distribution of all three variables is demonstrated in Fig-

ure 3. The figure demonstrates that manufacturing industries (codes start with C) possess a

much larger share of research personnel than service industries. As shown in the figure, the

3The Frascati Manual is a document setting forth the methodology for the collection of analyses of statistics

about research and development.
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manufacture of computer, electronic, and optical products (C26) has the largest shares of re-

search personnel among all the industries. Services are generally less research-oriented, with

only two groups demonstrating a relatively large share of R&D personnel: publishing of books,

software, and media (J55-J63) and professional, scientific, and technical activities (M69-M74).

See Appendix A.1 for a complete list of industries’ aggregates.

Figure 3: Industrial distribution of the research intensity proxy variables

Due to collinearity the independent variables cannot be included in the specification si-

multaneously. Therefore, I use three separate sets of specifications to analyse the association

between each independent variable with information leakage attacks rate.

The specifications with the share of research personnel as a primary independent variable

are built following the assumption that researchers and R&D support personnel cooperatively

contribute to innovative ideas. It assumes that industries with the largest share of research

personnel are the most research-intensive and produce the most valuable results. However,

it also implies that research intensity is proxied by the sum of the researchers and research

support personnel, which might not be the case (e.g. the cooperation might be synergistic, or

researchers might contribute significantly more than the research support personnel).

The second set of specifications assumes that research intensity can be attributed mainly

to the input of researchers and research professionals. While the assumption is plausible as the

research support personnel might not contribute to the research directly, it also neglects the

latter’s potential effects on the output of the ideas.
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Finally, the last set of tests is performed with the share of technicians, R&D managers

and other support personnel as the primary independent variable. A company with highly

productive researchers might hire a larger R&D support body. If researchers and research

support personnel are complements in the production function of the ideas, then they would

allow the researchers to focus on their work and increase their productivity.

Lewis (2017) suggested that a greater proportion of technicians and R&Dmanagers indicates

mature high-tech organisations specialising in process development. Those organisations have

a more elaborate division of labour which allows them efficiently commercialise innovation

and carry out abundant manufacturing in the pilot plants (Steger et al., 1975). Similarly, a

significant fraction of R&D managers, administrators, and equivalent personnel in the service

industries might indicate the high commercial potential of research output. In other words,

industries with a large share of R&D support personnel are typically those with the most

immediately marketable ideas and thus are often attractive targets for industrial espionage.

Moreover, the share of research support personnel has the most significant positive correlation

with the R&D expenses and overall turnover among all three proxies in our data.

On the other hand, a larger body of R&D support personnel might disproportionately in-

crease the company’s attack surface. It increases the number of people with access to sensitive

data without a substantial contribution to the ideas generation. Hence, the variable might cap-

ture both research intensity and extended attack surface. However, industry control variables

can rule out the attack surface effect. Additionally, I test the plausibility of the attack surface

hypothesis using the extended specification (see Subsection 4.4 for details), which includes the

auxiliary attack surface variable defined as the average amount of R&D support personnel in

an enterprise in a given industry in a given country. Being an absolute measure, it allows for

comparing the average attack surfaces among industries while neglecting the research intensity

itself4 (Terleckyj, 1960; Comanor, 1965; Gruber et al., 1966).

All research intensity proxy variables have a right-skewed distribution (See Appendix A.2).

Still, as with the dependent variable, there are no solid theoretical grounds to use any trans-

formation to normalise them.

I use an additional proxy variable to control the variance associated with opportunistic

attacks and test Hypothesis 2. Note that opportunistic attacks are responsible for most com-

promised consumer data and credentials - the information commonly stored in Customer Re-

4The attack surface variable does not capture research intensity as it does not allow for comparability of

R&D support bodies among industries. As the total average employment is not used in the robustness setups,

it only captures the attack surface’s variance.
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lationship Management (CRM) systems. Therefore, the last proxy variable is defined as CRM

usage rate (dij) in a given country in a given industry. I believe that the rate of CRM usage

will be higher in industries with more valuable customer data. The industrial distribution of

CRM usage rate is demonstrated in Figure 4. The histogram of this variable can be found in

Appendix A.2.

Figure 4: Industrial distribution of the CRM usage rate

The basic descriptive statistics for the dependent and independent variables can be found

in Table 2.

Variable Label Obs. Avg. Std.

Dev.

Min Max

Information breaches rate Bij 351 .014 .021 0 .19

Share of R&D personnel rperij 224 .027 .059 0 .649

Share of Researchers rresij 224 .015 .042 0 .506

Share R&D support personnel rsupij 222 .012 .020 0 .143

CRM usage rate dij 315 .285 .171 0 1

Table 2: Descriptive statistics for all main variables. Indices i and j denote a country and an

industry respectively

3.1.3 Categorical variables

The study utilises two sets of categorical variables to control for heterogeneity among countries

and industries. They account for unobserved differences across countries and industries by

allowing individual intersects for each category.
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Alongside with base sets of industry and country control variables, I use two additional

sets of Eurostat indicators on high-tech industry and knowledge-intensive services (Eurostat,

2016). The manufacturing-specific variable is based on the categories of manufacturing indus-

tries, including high-technology, medium-high-technology, medium-low-technology, and low-

technology. They were divided according to technological intensity. Table 13 of Appendix

A.5 presents aggregated categories. Following a similar approach, the study utilises service-

specific variables based on Eurostat’s definitions of knowledge-intensive services (KIS) and less

knowledge-intensive services (LKIS). The aggregation is demonstrated in Table 14 of Appendix

A.5.

3.2 Methodology

To investigate the relationship between information leakage attacks rate and the research inten-

sity based on the available dataset, the study adopts the Bayesian-frequentists hybrid method:

multiple imputation to handle partial observations followed by fractional outcome regression

analysis. The procedure is performed in three steps:

1. Multiple imputation, where M completed datasets (imputations) are simulated under the

chosen imputation specification;

2. Complete-data analysis, where fractional regression analysis is performed on each impu-

tation m = 1, ...,M ;

3. Pooling, where the results from M completed datasets are combined.

This subsection offers detailed information on the underlying statistical methods used in

each step.

3.2.1 Multiple imputation

The major challenge imposed by the data is partially missing observations: around 36% of

observations are missing for research intensity variables and 10% for the CRM variable. The

issue is mainly caused by the non-response in Eurostat’s surveys. If not handled carefully, it

could reduce statistical power, lead to biased estimates, and larger standard errors due to the

smaller sample size.

There are two generally accepted approaches to handle missing data: (1) omission, by which

partially incomplete observations are discarded from the analysis, and (2) imputation, by which

missing observations are filled in.
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The size of the dataset, the share of partially missing observations, and the lack of robustness

for standard statistical inference techniques render the omission option rather inappropriate.

On the other hand, imputation techniques are designed to extract all available information

from partially observed data and minimise bias.

The research adopts the multiple imputation (MI) technique introduced by Rubin (1987).

The multiple imputation approach is a Bayesian simulation-based statistical technique designed

to handle partially observed data. The method was initially used to tackle non-response in

medical surveys and handle datasets with up to 90% of observations missing (Madley-Dowd

et al., 2019).

The method is superior to the single imputation counterpart (e.g. last observation carried

forward, the sample mean imputation) as it accounts for the uncertainty of missing values. The

single imputation approach treats imputed values as genuinely observed, which causes standard

errors to be too small and causes a biased statistical inference. In reality, it is not possible to

know the exact values of the missing data, and the MI technique accounts for all inherent

uncertainty by injecting appropriate variability into the multiple imputed values (Sterne et al.,

2009).

The research utilises two MI procedures designed for univariate and multivariate models.

The univariate imputation of research intensity independent variables is utilising the Gaus-

sian normal regression model. The procedure is described below.

Consider a 351× 1 vector RL = (rL1j, .., r
L
ij; r

L
i1, ..., r

L
ij)

′, which records values for the research

intensity variables: shares of research personnel (L = per), researchers specifically (L = res),

or R&D support personnel (L = sup) in an industry i and country j. The variable then follows

a Gaussian normal regression model:

rLij|zij ∼ N
(
z′ij, σ

2
)
, (1)

zij = (zij1, zij2, ..., zijq) is a vector of values of predictors of rLij for observation ij, β is the q× 1

vector of unknown regression coefficients, and σ2 is the unknown scalar variance.

Consider then the division of RL =
(
RL

o
′, RL

m
′) into n0 × 1 and n1 × 1 vectors containing

the complete and incomplete observations respectively. Similarly Z = (Zo, Zm) is divided into

n0 × q and n1 × 1 submatrices.

The imputation then proceeds as follows to fill in RL
m:

1. Specification (1) is fitted to the observed data (RL
o , Zo) to obtain estimates β̂ and σ̂2 of

the model parameters.
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2. New parameters β̃ and σ̃2 are simulated from their joint posterior distribution under the

noninformative improper prior for a scaling parameter Pr(β, σ2) ∝ 1
σ2 . This is done in

two steps:

σ̃2 ∼ σ̂2 (n0 − q) /χ2
n0−q,

β̃|σ̃2 ∼ N
(
β̂, σ̃2 (Z ′

oZo)
−1
)
;

3. The new set of imputed values is obtained by simulating missing values of RL
m1 from

N(Zmβ̃, σ̃
2In1×n1);

4. Steps 2 and 3 are repeated to obtain M sets of imputed values:

RL
m2, R

L
m3, ..., R

L
mM .

Steps 2 and 3 follow the procedure of simulating the missing data from the posterior predictive

distribution, described by Gelman et al. (2020).

The univariate imputation models utilise the rate of information leakage attacks in industry

i, country j as the explanatory variable and both sets of categorical variables. Specification 1

can then be represented in the linear form:

rLij = β1 + β2Bij + ai + cj + ϵij.

where Bij is the share of enterprises that experienced information leakage attacks in an industry

i and country j, and ϵ is the error term.

The multivariate models utilise the modified version of the MI technique to allow the im-

putation of multiple variables with missing observations simultaneously: multiple imputation

by chained equations (MICE) developed by Van Buuren et al. (1999). MICE is more suitable

than other multivariate imputation methods as it can handle arbitrary missing-data patterns

(contrary to a standard multivariate imputation, which requires missing data patterns to be

monotone).

The MICE procedure imputes multiple variables iteratively following a sequence of univari-

ate multiple imputation models (one model for one partially observed variable). The procedure

can be described as follows. For imputation variables X1, X2, ..., Xq and complete predictors,
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Z, imputed values are drawn from:

X
(t+1)
1 ∼ g1

(
X1|X(t)

2 , ..., X t
p, Z, ϕ1

)
,

X
(t+1)
2 ∼ g2

(
X1|X(t+1)

1 , X
(t)
3 , ..., X(t)

p , Z, ϕ2

)
,

· · ·

X(t+1)
q ∼ gp

(
X1|X(t+1)

1 , ..., X
(t+1)
p−1 , Z, ϕq

)
.

for iterations t = 0, 1, ..., T until the imputed values converge at doomsday t = T . Here, ϕq, is

the vector of corresponding model parameters with a uniform prior and, gk is the corresponding

univariate imputation model appropriate for imputing corresponding independent variables,

Xk, where k = (1, ..., q). As for specification models, the research utilises multivariate normal

Gaussian regressions’ specifications:

X1 = β0 + β2X2 + ...+ βqXq + βq+1Bij + cj + ai + ϵij

X2 = β0 + β1X1 + β3X3 + ...+ βqXq + βq+1Bij + cj + ai + ϵij

· · ·

Xq = β0 + β1X1 + ...+ βq−1Xq−1 + βq+1Bij + cj + ai + ϵij,

For the described procedure to lead to valid statistical inference, four more condition’s

must be satisfied: (1) the chosen imputation models should be appropriate for the further

statistical analysis; (2) MI procedure must be proper ; (3) MI procedure requires the missing

data mechanism to be ignorable; and (4) a sufficient number of imputations, M , must be chosen

(Rubin, 1987). These conditions are discussed in more detail in Appendix A.3.

Thus, the research adopts the multiple imputation procedure to handle the relatively big

share of partially observed data. The procedure is designed to account for the uncertainty

embedded in the analysis of partially observed data instead of simply generating a dataset with

no missing data. Given that the above-mentioned conditions are satisfied, MI procedure should

lead to to the unbiased statistical analysis described in the following subsection.

3.2.2 Complete-data analysis

I use a fractional outcome regression developed by Wedderburn (1974). The method belongs

to the generalised linear models (GLM) class and is designed to fit outcome variables ∈ [0, 1].

Fractional outcome regression is specified as GLM of the binomial family with robust stan-

dard errors and a link function G(·) which satisfies G(z) ∈ [0, 1] for all z ∈ R:

E(Yi|Xi) = G(Xiβ). (2)
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Cumulative distribution functions (CDF) are often utilised as the link function for fractional

regression, with two most common options being the logistic function G(z) = Λ(z) = exp(z)
1−exp(z)

,

and the probit function G(z) = Φ(z), where Φ(z) is the CDF of a standard normal distribution.

However, it can be essentially any function bounded between 0 and 1, not necessarily a CDF.

Additionally, GLM class models require fewer assumptions to be satisfied to achieve unbiased

results (in comparison with the OLS regression) – see Appendix A.4 for the discussion. Given

that data cases are independently distributed, it is merely enough to specify the conditional

mean of the variable of interest correctly to achieve an unbiased statistical inference.

The research utilises two linear specifications that will be estimated on the imputed data:

SU - univariate specification and SM - multivariate specification:

Univariate specifications:

E(Bij|rLij, cj, ai) = G(β0 + β1r
L
ij + cj + ai) = G(SU), (3)

which is used to assess individual effects of the research intensity variables on the rate of

information leakage attacks.

Multivariate specifications:

E(Bij|rLij, dij, cj, aj) = G(β0 + β1r
L
ij + β2dij + ...+ cj) = G(SM), (4)

which is used to assess the effects of the research intensity variables on the rate of information

leakage attacks in the presence of an additional CRM usage rate variable (in the base multi-

variate specification). The variable is added to the model to control for the variance induced

by opportunistic attacks in which the leakage of personal records of clients is highly likely to

predominate. Note that the multivariate specification lacks the industry controls. They were

removed from the specification due to collinearity: the share of enterprises that use CRM sys-

tems is industry-dependent. Appendix A.6 provides the variance inflation factor (VIF) and

estimated within-industry variance of the CRM variable.

Following good practise procedures proposed by Villadsen and Wulff (2019) it is now nec-

essary to (1) verify the conditional mean specifications and (2) choose an appropriate link

function.

The conditional mean specification can be tested using the Regression Equation Specifi-

cation Error Test (RESET) developed by Ramsey (1969). It tests whether non-linear com-

binations of the fitted values (e.g. B̂P
ij , where P is the maximum power of the non-linear
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combination) are useful to explain the outcome variable. If non-linear combinations have any

influence on the outcome variable, then the tests suggest that the model is misspecified and it

may be better approximated via some non-linear function.

Tests results for both univariate and multivariate specifications under different link functions

are provided in Appendix A.7. All four tests fail to reject the null hypothesis that the fractional

outcome model is specified correctly.

I follow the canonical approach and discriminate between logit and probit link functions.

To do so, the research utilises the test of econometric specification in the presence of alterna-

tive specification (Davidson and Mackinnon, 1981). Test results for univariate and multivariate

specifications are provided in Appendix A.8. Both performed tests fail to reject the null hypoth-

esis implying the usage of probit link function. However, both link functions lead to extremely

close estimates, and the choice of link function would not influence the results.

The binomial GLM with probit link function then fits coefficients via maximising the fol-

lowing quasi-likelihood functions for every imputed dataset:

logL =
N in∑
i=1

Nc∑
j=1

(Bij log{Φ(S)}+ (1−Bij) log{1− Φ(S)}) , (5)

where N in/c is the number of industries and countries represented in the research, S is the

linear specification with S = SU for univariate specification and S = SM for multivariate

specification, and Φ is a CDF of standard normal distribution. The maximisation is performed

numerically following the Newton–Raphson iterative method (McMullen, 1987).

The statistical significance of a single coefficient is determined based on the standard score

(z) statistic. However, the coefficients of fractional regression outcome with probit link function

have limited interpretability. They can be interpreted as the difference in the standard scores

associated with a unit change in the regressor. Therefore, raw models’ results can only reveal

statistically significant effects and signs.

To achieve interpretable and comparable results, I estimate the marginal effects of each

variable. For univariate-specification models, the marginal effect estimation demonstrates how

the outcome (the conditional mean of the rate of information leakage attacks) variable changes

when a specific explanatory variable changes, ∂Y
∂X

. For models with a probit link function, the

marginal effect is estimated as follows:

∂Y

∂Xi

= βiϕ(S), (6)

where ϕ(·) is a standard normal probability density function.
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The procedures described above are performed for each imputed dataset, and then the

results are combined in the following pooling step.

3.2.3 Pooling step

Given that multiple imputations are proper, unbiased estimates can be achieved by a simple

averaging of the estimates derived by fitting fractional outcome regression models on each of

the 40 imputed datasets separately. Pooled estimates are then interpreted similarly as the

coefficients of a classic dataset model. All results reported in the next section are based on the

pooled coefficients.

3.3 Methodology discussion

This subsection provides a discussion on the chosen methodology.

3.3.1 Controlling for unobserved effects

The study utilises the conventional fixed effects method to account for unobserved heterogene-

ity of industries and countries. Alternatively, it is possible to model heterogeneity using the

mixed-effects method (also called multi-level or hierarchical models). This family of models

is especially attractive for research designs in which individuals are organised hierarchically at

more than one level (e.g. at the country and industry level in this study).

Unfortunately, the data adopted for this study do not allow for hierarchical mixed-effects

models. This happens due to the absence of replicated measurements at the industry-country

level (i, j). The hierarchical model is not identified for singleton pattern data because the

random intercepts estimated for the lower level (which is the ”industry” level in the case of this

research) are confounded with the overall error terms (Stata Corporation, 2013).

3.3.2 Handling missing data

The unbiasedness of the results depends on the validity of the imputation model. The impu-

tation method might not lead to an unbiased result if not handled correctly. Several pitfalls

might lead to a biased statistical inference.

Misspecification of regressors mainly exists due to the exclusion of the dependent variable

from a linear specification of the imputation equation. An outcome variable might possess

additional information about the missing values of the explanatory variables. Failure to include

the outcome variable into the imputation model weakens the association between the dependent
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variable and imputed regressors (von Hippel, 2013). The problem was avoided in the proposed

MI procedure, and every imputation model includes the dependent variable.

Imputation of non-normally distributed variables is another concern that is discussed in the

literature. The normality assumption of Gaussian regression, in general, applies to the error

terms. The assumption is satisfied, as demonstrated in Appendix A.9, so it is not an issue in

this particular research.

More debatable is whether the assumed imputation model is appropriate to handle the

imputation of bounded data (all imputed variables in this study are ∈ [0, 1]). The main concern

with the chosen specification is that the predicted values may fall outside the range of the

imputed variable. It is essential to remember that the MI procedure is not utilised to recreate

missing observations. Instead, it achieves an unbiased statistical inference by accounting for

uncertainty embedded in the missing observations. Imputed values are, therefore, not required

to be bounded.

Moreover, the study by Rodwell et al. (2014), which investigated the efficiency of imputation

methods of bounded variables based on 1000 incomplete simulated datasets, suggested that the

Gaussian MI procedure is superior to any conventional alternatives. Post-imputation rounding,

truncated normal regression, zero-skewness log-transformation, and predictive mean matching

are highly sensitive to the skewness of the imputed variables and prone to reducing the variance

of imputed values.

To conclude, the potential bias may arise from misspecification of MI procedure or imputing

data with a non-random missing pattern. Following Rubin’s recommendations, the proposed

MI procedure is carefully crafted to achieve proper multiple imputation. The Gaussian specifi-

cation is chosen based on a comprehensive empirical study of alternative imputation methods

of bounded variables. The inference based on complete cases is reported in Appendices.

3.3.3 Analytical model

Four main analytical models are used in statistic/econometrics literature to model fractions

(from the most popular to the least popular): (1) OLS regression, (2) OLS regression with

transformed dependent variable, (3) Tobit models, and (4) fractional regression (Villadsen

and Wulff, 2019). Additionally, the excess share of zero observations might suggest using

zero-inflated models. However, the four alternative methods have theoretical and practical

drawbacks discussed below.

The main problem with OLS regressions is that it ignores the boundaries of the outcome
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variable. Modelling an outcome variable ∈ [0, 1] with Gaussian normal regression will most

certainly require a violation of the linearity assumption. Another problem is the error term’s

heteroskedasticity, which requires special treatment (e.g. estimation of robust standard errors).

Furthermore, OLS is highly sensitive to skewed variables (which is not the case with fractional

outcome regressions with non-linear link functions). However, this model can still be used to

investigate the signs and sizes of the relationships, though the procedure must be performed

carefully.

The most popular transformation of the fractional dependent variable is a log-transformation,

which might normalise the data and solve the problem with outcome boundaries. The main

problem with this method is that it does not perform well with highly skewed dependent vari-

ables with a substantial share of zero observations. It requires some ad-hoc solution to make the

log-transformation of zero numbers possible (e.g. addition of some small negligible number),

which may lead to a biased inference. Moreover, the model requires substantial efforts to verify

the underlying assumption of the OLS regression.

The Tobit model was initially developed to model censored outcomes (e.g. outcomes which

values are only partially known) (McDonald and Moffitt, 1980). Fractional outcomes are not

censored in any way but instead defined only on the interval of ∈ [0, 1]. Censored outcomes

and corner solution responses (like fractional outcomes) are often confused. The application

of the Tobit model to the fractional outcomes implies that there exist some observations of

the dependent variable outside the unit range, which is not the case (Wooldridge, 2010). This

leads to difficulties in the interpretation of the Tobit model coefficients. The marginal effect

is only reflected on the coefficients of the latent (unobserved) variable, which is non-existent.

Moreover, the model assumes homoskedasticity and normality of error terms - conditions likely

to be violated when dealing with fractional outcomes.

Zero-inflated model might be another reasonable choice given the share of zero observations.

However, those models are generally harder to set due to the necessity of setting the predictor

for zero observations appearance, which, conditional on the nature of the data, might not be

feasible. Moreover, those models are generally used to tackle the problem of overdispersion,

which is not the case for a given data (see Table 2: the zero-inflated Poisson model would be

appropriate if mean of the dependent variable is much smaller than the variance). Addition-

ally, they cannot be applied to fractional variables directly and would require an additional

estimation step (e.g. the two-part composite model in Liu and Xin, 2014), which would further

complicate the interpretation and tracking of assumptions (Williams, 2019).

Fractional outcome regression is most suitable for our data. It performs extraordinarily well
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in the presence of heteroskedasticity, provides valid statistical inference for the bounded and

skewed outcomes, and produces interpretable and adequate estimates. Moreover, it is agnostic

about the moments of the outcome and requires only the correct specification of the conditional

mean.

4 Results

This section presents the results of the study. The study adopts the univariate and multivariate

specifications described in the section above. Both sets of specifications are tested with three

proposed research intensity proxy variables.

4.1 Fractional regressions results

Table 3 presents results of MI univariate fractional outcome regressions with all three research

intensity proxy variables. Column (I) of the table reports base regression results with no

control variables, columns (II) and (III) report regression results with the country and industry

controls included respectively, and column (IV) reports the results with both control variables

sets. Complete case regression analysis tables can be found in Appendices A.10, A.12, and

A.14.

The upper section of Table 3 contains results of univariate regression models with the share

of research personnel as the main explanatory variable. Research personnel’s coefficients are

positive in all four specifications and statistically significant at 5% level in three out four

specifications (with the the specification with the country only controls as an exception).

The middle section of Table 3 reports the results with an alternative measure of research

intensity: the share of researchers. As previously, models report positive coefficients next to the

primary explanatory variable. However, only coefficients for the specifications with industry

only controls, or both controls are statistically significant at 5% level.

Finally, the bottom section reports the results of models with the share of research support

personnel as the main explanatory variables. The coefficients are positive and statistically

significant in all four specifications at 1% level.

It is evident that regardless of the chosen research intensity variables, models specified with

both country and industry controls display positive and statistically significant (at 1% level)

coefficients.

Raw fractional probit models’ coefficients, however, are not further interpretable. Results
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only indicated the positive sign of the correlation between the alternative research intensity

proxy variables and the information leakage attacks rate. The interpretation of results is in-

cluded in the following analysis of coefficients’ marginal effects.

Table 3: Regression results: fractional probit regressions with share of research personnel as an

independent variable

I II III IV

Base Country Industry All

model controls controls controls

Research personnel MI models

rper 1.377∗∗ 1.011∗ 1.820∗∗ 1.285∗∗

(2.23) (1.95) (2.44) (2.43)

Constant -2.233∗∗∗ -2.100∗∗∗ -2.252∗∗∗ -2.110∗∗∗

(-67.86) (-14.56) (-24.76) (-13.69)

Researchers MI models

rres 1.366∗ 1.052 1.747∗∗ 1.315∗∗

(1.68) (1.53) (1.97) (2.07)

Constant -2.212∗∗∗ -2.086∗∗∗ -2.239∗∗∗ -2.101∗∗∗

(-70.84) (-14.27) (-24.96) (-13.38)

R&D support personnel MI models

rsup 6.225∗∗∗ 3.838∗∗∗ 9.106∗∗∗ 5.521∗∗∗

(3.81) (2.80) (4.38) (3.67)

Constant -2.273∗∗∗ -2.110∗∗∗ -2.279∗∗∗ -2.118∗∗∗

(-68.83) (-15.78) (-23.31) (-14.35)

Observations 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels; See Appendices A.11, A.13, A.15 for complete tables

4.2 Marginal effects analysis

Table 4 presents average marginal effects estimates (as shown by equation (6)) for all three

alternative research intensity proxy variables estimated for models with all controls included.

As expected, all presented coefficients are positive and statistically significant at 5% level (or

even at 1% level for the share of research support personnel). It is now possible to interpret
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the coefficients in the same fashion as coefficients of a classic OLS regression.

Table 4: Average marginal effects of research intensity proxy variables in models with all

controls

∂B/∂rper ∂B/∂rres ∂B/∂rsup

Marginal effect 0.0432∗∗ 0.0442 ∗∗ 0.185∗∗∗

(2.38) (2.04) (3.55)

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In the model with the share of research personnel as the main independent variable, a

10 percentage points increase in the share of research personnel is associated with a 0.432

percentage point increase in the information leakage attacks rate. This marginal effect is

relatively similar to that demonstrated by the model with the share of researchers as the

primary independent variable: a 10 percentage points increase in the share of researchers is

associated with a 0.442 percentage points increase in the information leakage attacks rate.

The model with the share of research support personnel delivers much more prominent

results. A 10 percentage points increase in the share of research support personnel is associated

with a 1.85 percentage points increase in the information leakage attacks rate.
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Figure 5: Point estimates of the marginal effects of the research proxy variables

The substantial difference in the magnitude is also evident from the shape of the partial

derivative function. As illustrated in Figure 5, all three marginal effects follow quadratic growth

as the share of the corresponding research body increases. In particular, the marginal effect

of the share of research support personnel has a much steeper shape than the marginal effects
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of the other two proxy variables. In its peak (rsup = 14%), a 1 percentage point increase in

the share of research support personnel is associated with a 0.634 percentage point increase

in the information leakage attack rate. Meanwhile, the marginal effects of the shares of re-

search personnel and researchers have a similar, yet more gradual incline ( ∂B/∂rper = 0.14 at

max rper = 64% and ∂B/∂rres = 0.15 at max rres = 50%).

4.3 Targeted and opportunistic attacks

As stated above, most data breaches are affiliated with opportunistic, financially motivated

breaches responsible for the majority of compromised customers’ data.

Table 5: Regression results: fractional probit regressions with research poxies, CRM variable

and country controls

I II III

R&D personnel Researchers R&D support

model model model

MI models

rper 0.562

(1.22)

rres 0.410

(0.53)

rsup 3.041∗∗

(2.35)

d 0.715∗∗∗ 0.762∗∗∗ 0.641∗∗∗

(3.63) (3.78) (3.48)

Constant -2.409∗∗∗ -2.416∗∗∗ -2.395∗∗∗

(-14.62) (-14.64) (-15.37)

Observations 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as base level; See Appendices A.16 and A.17 for complete tables

It is possible that the chosen dependent variable accounts mostly for opportunistic attacks,

and the discovered relationships are spurious and are not related to the targeted information

leakage attacks. To control for this possibility, the study estimates multivariate specifications,

which include a proxy variable that represents a measure of how much end-user data are avail-
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able to be stolen in an industry - the CRM usage rate. Results for the extended multivariate

specification for all three research proxy variables (as demonstrated by equation (4)) are pre-

sented in Table 5. The table for complete case analysis can be found in Appendix A.16.

One should approach the interpretation of the coefficients estimated for the CRM variable

with caution. As industry control variables were excluded from the following sets of mod-

els due to collinearity, the CRM variable might absorb the variance generated by industrial

heterogeneity unrelated to the CRM usage rate.

In all three presented models, the coefficients for the CRM usage rate are positive and

statistically significant at 1% level. All three models report positive signs of coefficients for the

research intensity variables. Nonetheless, only the share of research support personnel has a

statistically significant coefficient at 5% level.

As suggested earlier, the variable might indicate mature high-tech manufacturing or service

industries with a substantial body of commercialisable research. I now consider the model

presented in column (3) of Table 5 in further detail. The average marginal effects of the share

of R&D support personnel and the CRM usage rate on the information leakage attacks rate

are presented in Table 6.

Table 6: Average marginal effects in extended models

∂B/∂rsup ∂B/∂d

Marginal effect 0.103∗∗ 0.0217∗∗∗

(2.28) (3.34)

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The average marginal effect of the share of R&D support personnel in the MI models is

positive and statistically significant at 5% level: a 10 percentage points increase in the share of

R&D support personnel is associated with a 1.03 percentage points increase in the information

leakage attack rate. Likewise, the raw coefficient, the average marginal effect of the CRM

usage rate on the information leakage attacks rate is positive and significant at 1% level. A 10

percentage points increase in the CRM usage rate is associated with a 0.22 percentage points

increase in the information leakage attack rate.

The average marginal effect of the share of R&D support personnel is larger than that of

the CRM system usage rate. Still, direct comparison of the effects is case-specific due to the

industrial heterogeneity of variables’ means. Point estimates of the marginal effects of both

variables are demonstrated in Figure 6. As with the univariate models, the measured marginal
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effects of the share of R&D support personnel and the CRM usage rate exhibit quadratic

growth. The marginal effect function for the research intensity proxy is much steeper than the

marginal effect function of CRM usage rate. It means that more research-intensive industries

experience a larger effect of an additional percentage point of R&D support personnel.

0
.0

5
.1

.1
5

.2
M

ar
gi

na
l e

ffe
ct

 o
n 

in
fo

rm
at

io
n 

le
ak

ag
e 

ra
te

0 .2 .4 .6 .8 1

Share

R&D support personnel CRM

Figure 6: Marginal effects of the share of R&D support personnel and CRM usage rate point

estimates

4.3.1 Technological environments

This subsection investigates the relationships between the primary dependent variable, the re-

search intensity proxy, and the CRM usage rate in diverse technological environments. The

multivariate specification is estimated separately for manufacturing, services, and correspond-

ing technological and knowledge-intensity levels. Examining coefficients’ magnitudes in differ-

ent technological environments might provide supportive evidence for the underlying causal

mechanism.

The manufacturing and service industries are divided according to the Eurostat indicators

on high-tech industry and knowledge-intensive services provided in Appendix A.5. Note that

to maintain a healthy amount of observations, the manufacturing industries are grouped into

two groups instead of four: the high-tech group absorbs high-technology and medium-high-

technology groups. In contrast, the low-tech group includes medium-low-technology and low-

technology industries.

If the causal mechanism is plausible, two associations identified in Subsection 4.3 should

exhibit different patterns depending on the technological environment. It is expected that the

information leakage attacks in manufacturing industries are closely associated with research
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intensity, and the association would be stronger in high-tech manufacturing industries. On

the other hand, relatively less R&D intensive and more end-user data-reliant service industries

would experience information leakage attacks more closely related to CRM usage. Capturing

this pattern might suggest that manufacturing industries are prone to experience targeted

attacks, while services suffer from opportunistic, financially driven attacks.

The specifications are estimated in technological clusters. This should reduce the potential

heterogeneity captured by the CRM usage rate variable in the full-sample estimation and reveal

less biased coefficients. Fractional regression results for manufacturing industries are presented

in Table 7.

Table 7: Regression results: fractional probit regressions on imputed data with research proxy

and CRM variable for manufacturing industries

I II III

All Low-tech High-tech

manufacturing manufacturing manufacturing

rsup 4.488∗∗∗ 3.200 7.206∗∗∗

(2.77) (0.66) (3.13)

d -0.776 -0.651 -1.337

(-1.41) (-0.87) (-1.29)

Constant -1.549∗∗∗ -1.705∗∗∗ -1.223∗∗

(-5.43) (-4.98) (-2.24)

Observations 152 81 71

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level; See Appendix A.18 for the full table

Coefficients of the CRM system usage are not significant in all demonstrated specifications.

It suggests that opportunistic attacks do not contribute to the information leakage attacks rate

variance in manufacturing industries. Coefficients for the share of R&D support personnel are

positive and significant at 1% for high-tech and all manufacturing industries on average. Neither

the CRM system usage nor the research intensity proxy demonstrate statistically significant

coefficients for low-tech industries. Results suggest that information leakage attacks in the

manufacturing industries are more likely to be targeted, as they are strongly associated with

the R&D intensity proxy while demonstrating no association with the data reliance proxy.
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Table 8 presents results of the average marginal effects of the share of R&D support per-

sonnel. As expected, the marginal effect is not significant in low-tech industries. The average

marginal effect of the share of R&D support personnel in the high-tech industries is substan-

tially larger than the effect in all manufacturing industries. A 10 percentage points increase in

the share of research support personnel is associated with a 1.26 percentage points increase in

the information leakage attacks rate in all manufacturing industries on average. In high-tech

industries, a 10 percentage points increase in the share of research support personnel is associ-

ated with a 1.92 percentage points increase in the information leakage attacks rate. The results

align with the previous finding that the marginal effect function of the share of R&D support

personnel is convex and steep.

Table 8: Average marginal effect in manufacturing models

I II III

All Low-tech High-tech

manufacturing manufacturing manufacturing

∂B/∂rsup 0.126∗∗∗ 0.091 0.192∗∗∗

(2.70) (0.66) (3.38)

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Results of fractional outcome regressions for the subsamples of service industries are pre-

sented in Table 9. The models demonstrate the opposite outcomes to those seen in the manufac-

turing environment. The coefficients for the share of R&D support personnel are insignificant

in all demonstrated specifications. In contrast, the CRM usage rate coefficients are significant

at the 1% level for knowledge-intensive and all knowledge-based services. Table 10 offers av-

erage marginal effects estimates for the CRM variable: a 10 percentage points increase in the

CRM usage rate is associated with a 0.274 percentage points increase in the information leakage

attacks rate in all knowledge-based service industries. The magnitude of the average marginal

effect is more pronounced in the knowledge-intensive service industries, with a 10 percentage

points increase in the CRM usage rate associated with a 0.420 percentage points increase in

the rate of information leakage attacks. Those results suggest that, contrary to manufacturing

industries, information leakage attacks in the service industries are more likely to be oppor-

tunistic, as the dependent variable demonstrates a strong association with the data reliance

proxy and no association with the research intensity proxy. Moreover, knowledge-intensive ser-

vice industries (which are generally more data reliant) tend to be affected by the phenomenon
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more than their less knowledge-intensive counterparts.

Table 9: Regression results: fractional probit regressions on imputed data with research proxy

and CRM variable for service industries

I II III

All knowledge- Less knowledge- Knowledge-

based services intensive services intensive services

rsup 3.698∗ 10.70∗ 1.862

(1.82) (1.89) (1.01)

d 0.729∗∗∗ 0.238 0.985∗∗∗

(3.48) (0.43) (4.55)

Constant -2.573∗∗∗ -2.345∗∗∗ -2.698∗∗∗

(-23.41) (-8.96) (-27.33)

Observations 199 105 94

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level; See Appendix A.19 for the full table

Table 10: Average marginal effect in service models

I II III

All knowledge- Less knowledge- Knowledge-

based services intensive services intensive services

d 0.0274∗∗∗ 0.00776 0.0420∗∗∗

(3.36) (0.42) (4.45)

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Therefore, as suggested in the above analysis, the information leakage attacks rate in manu-

facturing industries is mainly attributed to targeted attacks (potentially cyberespionage), while

the attacks in service industries are primarily attributed to opportunistic attacks. However,

the tests only provide supporting evidence for causal relationships instead of establishing them.
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4.4 Alternative explanations and robustness checks

The study focuses on the share of research support personnel as the primary research intensity

proxy. The variable demonstrates statistically significant and positive coefficients in all uni-

variate and multivariate specifications and possesses the largest average marginal effect among

the alternatives. The findings align with the proposed causal mechanism, but they do not rule

out other potential causal paths. In search of additional supporting evidence, I perform several

robustness tests to verify the behaviour of the primary variable in the presence of auxiliary

variables that stand for alternative causal mechanisms.

Table 11: Regression results: robustness checks

I II III IV V

A.Surface Turnover E-comm Sysadmin All

controls controls controls controls controls

rsup 3.277∗∗∗ 3.235∗∗∗ 3.783∗∗∗ 2.999∗∗ 3.981∗∗

(2.68) (2.72) (3.25) (2.01) (2.53)

d 0.585∗∗∗ 0.581∗∗∗ 0.285 0.540∗∗∗ 0.310

(3.02) (2.96) (1.34) (2.88) (1.45)

A.Surface -18E-7 703E-9

(-0.17) (0.07)

Turnover 0.000120 0.0000710

(0.32) (0.19)

E-comm 0.00768∗∗ 0.00787∗∗

(2.22) (2.30)

Sysadmin 0.0822 -0.0711

(0.33) (-0.29)

Constant -2.370∗∗∗ -2.371∗∗∗ -2.464∗∗∗ -2.380∗∗∗ -2.458∗∗∗

(-15.16) (-15.08) (-14.51) (-14.61) (-14.41)

Observations 351 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level; See Appendix A.20 for the full table

Observe the R&D support personnel variable might capture two effects simultaneously: (1)

the values of the research ideas, and (2) the extended attack surface. Column (I) of Table

11 shows a specification with an additional attack surface variable that represents an average
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quantity of the R&D support employees in the enterprise in a given industry in a given country.

The additional variable hardly has any effect on the original variables’ coefficients, and does

not support the claim.

Another alternative scenario is that cyberattacks are generally performed on rich industries,

which, in turn, can afford a larger R&D support body. It means that both information leakage

attacks and research intensity might be confounded by the company’s average turnover in a

given industry in a given country. This alternative is tested in Column (II) of Table 11. The

newly included variable does not have any effect on the results.

Column (III) of Table 11 demonstrates the results of the specification with included e-

commerce variable, which shows the share of enterprises in a given country in a given industry

that have any electronic sales. It tests for the alternative scenario in which the most attacked

industries are the ones that participate in e-commerce. Again, the additional variable does

not significantly affect the research intensity variable. However, it renders the CRM variable

insignificant. This phenomenon can be easily explained: the CRM and e-commerce variables

are highly correlated. The e-commerce variable should not significantly change the results for

the research intensity proxy as its magnitude is mainly attributed to manufacturing industries,

which have relatively less engagement in e-commerce.

It might also be the case that research intensity proxies are highly correlated with the

number of system administrators in a given country in a given industry. It is a known fact that

system administrators are the most common threat actor in the internal industrial espionage

cases (Verizon Business, 2020). Assuming that the same might be true for attacks performed by

the external actors, it could be the case that the effects of system administrators might confound

independent and dependent variables. Column (IV) displays results under the specification,

which utilises an additional variable, sysadmin, that stands for the share of enterprises with an

in-house system administrator in a given country in a given industry. The coefficient next to

this variable is insignificant and does not affect the original variables’ coefficients.

Column (V) displays results under the specification with all additional auxiliary variables

included. Again, the main result of the research intensity variable demonstrates robustness in

a setting with all additional controls and even a slight increase in its magnitude.

Another potential source of endogeneity is research personnel engaged in cybersecurity re-

search. However, cybersecurity researchers constitute only a tiny fraction of the overall em-

ployment. For example, only 43, 000 employees worked in the cybersecurity sector in the UK

in 2019, which was less than 0.25% of the overall workforce. Moreover, only a fraction of them

engaged in the research and development (Donaldson et al., 2020).
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The additional tests suggest that the main result is robust, even when controlling for al-

ternative scenarios. The tests provide no evidence suggesting alternative causal mechanisms.

However, those possibilities cannot be ruled out entirely until the causality between the in-

formation leakage attacks rate and the research intensity proxy is established, a challenge to

overcome in future research.

5 Conclusion

This paper studies the possible determinants of industrial information leakage attacks. Such

attacks are often used as a means of unfair competition and are associated with industrial

cyberespionage.

The study theorises that a fair share of targeted information leakage attacks happens as a

part of the R&D race and, therefore, research-intensive industries are expected to be particularly

susceptible to industrial cyberespionage. However, targeted attacks and industrial espionage

constitute only a part of the picture.

The study implements a multi-stage approach in which the leading hypothesis is tested in

a series of univariate and multivariate specifications. The multi-stage design allows assessing

the performance of three different research proxy variables both solely and in the presence of

auxiliary variables that control for opportunistic attacks and alternative causal mechanisms.

The results of the univariate model of Eurostat data are consistent with the proposed causal

mechanism. Regardless of the chosen research intensity proxy, the models demonstrate positive

and statistically significant coefficients after controlling for industry and country unobserved

effects. Nevertheless, the variables differ considerably in their magnitudes. The share of research

support personnel has a four times larger average marginal effect than the other two research

intensity proxies. Furthermore, this is the only research intensity proxy that maintains a

significant coefficient in the multivariate model.

The multivariate model reveals that user data reliance is another major contributor to the

information leakage attacks rate variance. The study distinguished two significant associations,

potentially connected with targeted and opportunistic attacks respectively.

Estimating the multivariate specification on the subsamples of manufacturing, services, and

their respective technological levels reveals that the discovered associations are industry-specific.

Manufacturing industries (that are generally more R&D oriented) experience cyberattacks asso-

ciated with research intensity. The correlation is more prominent in the subsample of high-tech

manufacturing industries, which can be considered additional supporting evidence favouring the
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proposed theory. The coefficients for user data reliance are insignificant in all models estimated

for manufacturing industries. The situation is the opposite in the service industries, which

experience information leakage attacks associated solely with end-user data reliance. Similarly,

the effect becomes more salient in the subsample of knowledge-based services.

The association between the information leakage attack rate and research intensity in man-

ufacturing industries suggests that a major share of attacks might be targetted (potentially

cyberespionage). Moreover, the attack rate is sensitive to the manufacturing industry’s re-

search intensity and technological level. Those results provide supporting evidence in favour

of the proposed causal mechanism. However, the causality is still to be established in future

research, and alternative scenarios should not be ruled out completely.

To conclude, the study provides supporting evidence that research-intensive industries are

more likely to become victims of information leakage attacks. This phenomenon could be

associated with unfair competition and industrial espionage.
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A Appendix

A.1 List of industries’ aggregates

Table 12: Industries according to NACE rev.2

NACE Label

C13-C15 Manufacture of textile, leather and clothes

C16-C18 Manufacture of wood and products of wood and

cork, except furniture; articles of straw and plait-

ing materials

C19-C23 Manufacture of coke, refined petroleum, chemical

and basic pharmaceutical products, rubber and

plastics, other non-metallic mineral products

C24-C25 Manufacture of basic metals and fabricated metal

products excluding machines and equipment

C26 Manufacture of computer, electronic and optical

products

C27-C28 Manufacture of electrical equipment, machinery

and equipment

C29-C30 Manufacture of motor vehicles, trailers and semi-

trailers, other transport equipment

C31-C33 Manufacture of furniture and other manufactur-

ing; repair and installatio n of machinery and

equipment

D35-E39 Electricity, gas, steam, air conditioning and water

supply

F41-F43 Construction and civil engineering

G45-G47 Trade of motor vehicles and motorcycles

H49-H53 Transport

I55-I56 Accommodation and Food and beverage service

activities

J58-J63 Publishing of books, software and media

K64 Monetary intermediation
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Industries according to NACE rev.2 (continued)

K65 Insurance, reinsurance and pension funding, ex-

cept compulsory social security

K66 Activities auxiliary to financial services and insur-

ance activities

L68 Real estate activities

M69-M74 Professional, scientific and technical activities

N77-N82 Activities for rental and leasing, employment, se-

curity and investigation, services to buildings and

landscape, office administrative

S951 Repair of computers and communication equip-

ment

A.2 Independent variables histograms

Figure 7: Share of research personnel histogram
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Figure 8: Share of researchers histogram

Figure 9: Share of R&D support personnel histogram
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Figure 10: CRM usage rate histogram

A.3 Multiple Imputation conditions

An appropriate imputation model is the model which preserves all relationships inside the data

that are relevant to the analysis. It means that imputation models should include all variables

(including the dependent variable in question) utilised in the analytical models, which is ensured

in this research by design. The appropriate imputation model is required for a proper MI

procedure.

A Proper MI procedure is defined as the one that yields consistent asymptotically normal

estimators and approximately unbiased estimator of its asymptomatic variance in common

regular models (Rubin’s rule) (Nielsen, 2007). In practice, it means that if the multiple im-

putations are proper, then complete data estimates can be obtained by a simple averaging of

within imputation estimates. Their variances are then obtained by combining the within- and

between-imputation variances.

Missing-data mechanism should be ignorable in order for the MI technique to produce

unbiased results. That means that the pattern of missing observations must not depend on

unobserved data. This condition is satisfied when: (1) data are missing completely at random

(MCAR) and depend neither on observed nor unobserved data, or (2) data are missing at

random (MAR), which allows the missing data pattern to be dependent on the observed data.

MCAR assumption is seldom satisfied in real life. Moreover, there is no formal statistical
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procedure to test the MAR assumption. Therefore, the ignorability of the missing pattern is

generally assumed based on the nature of the dataset and the available knowledge about it

(Liu, 2015; Little and Rubin, 2002). Given that observations are likely missing due to industry-

specific reasons, adopted control variables can be used to model the missingness mechanism. It

then enables the research to assume that data is MAR Bland (2006).

Additionally, it was shown by Schafer and Graham (2002); Collins et al. (2001) that model-

based imputation methods (e.g. maximum likelihood or multiple imputation) perform well and

do not create substantial bias even when the data are not MAR.

The sufficient quantity of completed datasets is another crucial point to determine to achieve

stable unbiased results. Following the recommendations by Graham et al. (2007), the research

chooses 40 imputations, which correspond to up to 50% of missing data. It is more than what

was initially recommended by Rubin but should allow for more consistent point estimates and

standard errors (von Hippel, 2020).

A.4 Assumptions for GLM class models

1. Linearity assumption is relaxed, meaning that an outcome variable does not need to have

a linear relationship with regressors. The outcome variable is assumed to be generated

from a particular distribution in an exponential family,

2. The fractional outcome model assumes a correct conditional mean specification and is

agnostic about other moments of the outcome. It utilises robust estimators of a variance-

covariance matrix to achieve consistent estimates of the unknown standard errors, which

implies the that homoscedasticity assumption is relaxed (White, 1994; Pinzon, 2016),

3. Normality of error terms is not necessary.
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A.5 Eurostat indicators on high-tech industry and knowledge-intensive

services

Manufacturing industires NACE Rev. 2

High-technology C21, C26

Medium-high-technology C20, C27-C30

Medium-low-technology C19, C22-C25, C33

Low-technology C10-C18, C31-C32

Table 13: Aggregations of manufacturing based on NACE Rev. 2

Knowledge based services NACE Rev. 2

Knowledge-intensive services (KIS) J58-I63, K64-K66, L68, M69-M74

Less knowledge-intensive services (LKIS) D35-E39, F41-F43, G45-G47, H49-H53, I55-I56,

N77-N82, S951

Table 14: Aggregations of services based on NACE Rev. 2
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A.6 Collinearity in multivariate specifications

Tables 15 and 16 provide variance inflation factors for the main independent variables in multi-

variate specification with and without industry controls correspondingly. Sufficiently high VIF

(> 4) is conventionally considered as a sign of collinearity. The removal of industry controls

mitigates the problem. Table 17 demonstrates that within industry variance of CRM usage is

sufficiently small.

Variable VIF 1/VIF

rLij 2.15 0.464536

Dij 5.20 0.192332

Table 15: Variance Inflation Factor for the main independent variables in multivariate specifi-

cation with industry controls

Variable VIF 1/VIF

rLij 1.39 0.719559

Dij 1.91 0.522411

Table 16: Variance Inflation Factor for the main independent variables in multivariate specifi-

cation without industry controls
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Industry NACE r2 code Variance

C10-C12 0.003526

C13-C15 0.012441

C16-C18 0.01804

C19-C23 0.014848

C24-C25 0.010181

C26 0.058687

C27-C28 0.019917

C29-C30 0.008458

C31-C33 0.011255

D35-E39 0.014388

F41-F43 0.004358

G45-G47 0.009418

H49-H53 0.006454

I55-I56 0.006485

J58-J63 0.010973

K64 0.03126

K65 0.021616

K66 0.054944

M69-M74 0.013961

N77-N82 0.011742

S951 0.050869

Table 17: Within industry variance of CRM system usage
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A.7 RESET

H0: all non-linear combinations coefficients are zero - the model is correctly specified

1. RESET results for univariate specification with probit link function

Maximum polynomial power: 2

Statistic 1.072

P-value 0.3005 > 0.05

Result: fail to reject H0

2. RESET results for univariate specification with logit link function

Maximum polynomial power: 2

Statistic 1.353

P-value 0.2448 > 0.05

Result: fail to reject H0

3. RESET results for base multivariate specification with probit link function

Maximum polynomial power: 2

Statistic 1.315

P-value 0.2516 > 0.05

Result: fail to reject H0

4. RESET results for base multivariate specification with logit link function

Maximum polynomial power: 2

Statistic 0.724

P-value 0.3948 > 0.05

Result: fail to reject H0

49



A.8 Alternative specifications test

Univariate fractional probit vs. logit models

H0: Univariate fractional probit model

H1: Univariate fractional logit model

Version: t-test

Statistic: -0.190

P-value: 0.8496

Result: fail to reject H0

Multivariate fractional probit vs. logit models

H0: Multivariate fractional probit model

H1: Multivariate fractional logit model

Version: t-test

Statistic: 0.915

P-value: 0.3614

Result: fail to reject H0
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A.9 Kernel density plots of residuals of imputation models
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Figure 11: Residuals distributions for univariate imputation models

0
10

20
30

40
50

-.2 0 .2 .4 .6
x

R&D personnel Researchers
R&D support personnel

Figure 12: Residuals distributions for multivariate imputation models
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A.10 Complete case regression analysis results for rper

Table 18: Regression results: fractional probit regressions on complete data with share of

research personnel as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rper 0.965∗∗ 0.612∗∗ 1.217∗∗ 1.036∗∗∗

Complete (2.08) (1.96) (2.04) (3.11)

BG -0.730∗∗∗ -0.760∗∗∗

(-3.01) (-2.96)

CY -0.820∗∗∗ -0.847∗∗∗

(-3.81) (-3.90)

CZ -0.257∗ -0.295∗∗

(-1.69) (-2.01)

DK -0.341∗∗ -0.417∗∗

(-2.17) (-2.57)

ES -0.209 -0.240

(-1.43) (-1.50)

FI -0.373∗∗ -0.441∗∗

(-2.04) (-2.37)

FR -0.111 -0.182

(-0.62) (-1.15)

HR -0.454∗∗ -0.486∗∗

(-2.07) (-2.52)

HU -0.865∗∗∗ -0.822∗∗∗

(-2.73) (-2.78)

IE -0.414∗∗ -0.430∗∗

(-2.34) (-2.42)

IT -0.196 -0.207

(-1.17) (-1.25)

LT 0.182 0.168
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Table 18: Regression results: fractional probit regressions on complete data with share of

research personnel as an independent variable (continued)

(1.20) (1.11)

LV -0.199 -0.198

(-1.06) (-1.11)

MT -0.0241 -0.0703

(-0.12) (-0.39)

NL 0.268∗ 0.244

(1.81) (1.61)

NO -0.452∗∗ -0.502∗∗∗

(-2.44) (-2.70)

PT -0.269∗ -0.338∗∗

(-1.89) (-1.98)

RO 0.0236 0.0289

(0.15) (0.18)

SI -1.193∗∗∗ -1.213∗∗∗

(-3.84) (-3.87)

SK 0.325∗∗ 0.285∗

(2.01) (1.82)

C13-C15 -0.240 -0.112

(-1.31) (-1.03)

C16-C18 -0.165 -0.0419

(-1.10) (-0.41)

C19-C23 -0.177 -0.0981

(-0.88) (-0.62)

C24-C25 0.0384 0.140

(0.27) (1.39)

C26 -0.251 -0.187

(-1.30) (-1.60)

C27-C28 -0.124 -0.0568

(-0.71) (-0.48)

C29-C30 -0.0138 0.0656
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Table 18: Regression results: fractional probit regressions on complete data with share of

research personnel as an independent variable (continued)

(-0.09) (0.64)

C31-C33 -0.106 -0.0426

(-0.59) (-0.41)

D35-E39 -0.121 0.0563

(-0.81) (0.66)

F41-F43 -0.0576 -0.00865

(-0.46) (-0.11)

G45-G47 -0.0333 0.0909

(-0.29) (1.47)

H49-H53 -0.0699 0.0448

(-0.52) (0.57)

I55-I56 -0.294∗∗ 0.00450

(-2.49) (0.03)

J58-J63 0.106 0.247∗∗∗

(0.72) (2.97)

L68 0.0217 0.157

(0.12) (1.36)

M69-M74 -0.190 -0.0591

(-1.11) (-0.59)

N77-N82 -0.00764 0.0610

(-0.06) (0.90)

S951 -0.518 -0.110

(-1.64) (-0.42)

Constant -2.214∗∗∗ -2.080∗∗∗ -2.139∗∗∗ -2.093∗∗∗

(-71.13) (-14.90) (-23.27) (-13.96)

Observations 224 224 224 224

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels
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A.11 Multiple imputation regression analysis results for rper

Table 19: Regression results: fractional probit regressions on imputed data with share of re-

search personnel as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rper 1.377∗∗ 1.011∗ 1.820∗∗ 1.285∗∗

(2.23) (1.95) (2.44) (2.43)

BG -0.651∗∗∗ -0.716∗∗∗

(-3.01) (-3.11)

CY -0.660∗∗∗ -0.749∗∗∗

(-3.13) (-3.82)

CZ -0.243 -0.340∗∗

(-1.58) (-2.15)

DE -3.371∗∗∗ -3.568∗∗∗

(-14.00) (-11.93)

DK -0.341∗∗ -0.445∗∗∗

(-2.16) (-2.69)

EL -0.621∗ -0.648∗

(-1.81) (-1.92)

ES -0.131 -0.279∗

(-0.83) (-1.77)

FI -0.409∗∗ -0.484∗∗

(-2.17) (-2.48)

FR -0.0809 -0.200

(-0.46) (-1.27)

HR -0.493∗∗ -0.554∗∗∗

(-2.18) (-2.71)

HU -0.750∗∗∗ -0.839∗∗∗

(-3.04) (-3.68)

IE -0.404∗∗ -0.468∗∗∗
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Table 19: Regression results: fractional probit regressions on imputed data with share of re-

search personnel as an independent variable (continued)

(-2.35) (-2.59)

IS -0.564∗∗ -0.658∗∗∗

(-2.14) (-2.85)

IT -0.116 -0.193

(-0.68) (-1.18)

LT 0.262 0.201

(1.52) (1.21)

LU -0.509∗∗ -0.595∗∗∗

(-2.25) (-2.86)

LV -0.157 -0.221

(-0.84) (-1.27)

MK -3.379∗∗∗ -3.471∗∗∗

(-21.20) (-19.04)

MT 0.0411 -0.0583

(0.23) (-0.34)

NL 0.292∗ 0.228

(1.96) (1.47)

NO -0.350∗ -0.451∗∗

(-1.74) (-2.33)

PL -0.241 -0.693∗∗∗

(-1.55) (-3.68)

PT -0.265∗ -0.304∗

(-1.83) (-1.78)

RO -0.0278 -0.0566

(-0.17) (-0.33)

SE -0.491∗∗∗ -0.570∗∗∗

(-2.72) (-3.02)

SI -1.198∗∗∗ -1.267∗∗∗

(-3.85) (-3.95)

SK 0.395∗∗ 0.311∗∗
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Table 19: Regression results: fractional probit regressions on imputed data with share of re-

search personnel as an independent variable (continued)

(2.39) (2.00)

TR -0.0219 -0.0801

(-0.14) (-0.49)

UK -3.354∗∗∗ -3.545∗∗∗

(-14.01) (-12.12)

C13-C15 -0.0825 -0.0919

(-0.54) (-0.98)

C16-C18 -0.0953 -0.0436

(-0.68) (-0.43)

C19-C23 -0.188 -0.127

(-0.97) (-0.85)

C24-C25 0.0639 0.136

(0.46) (1.43)

C26 -0.313 -0.210∗

(-1.60) (-1.71)

C27-C28 -0.00476 0.0470

(-0.03) (0.39)

C29-C30 -0.0531 0.0384

(-0.33) (0.39)

C31-C33 -0.106 -0.0755

(-0.61) (-0.77)

D35-E39 -0.0621 0.0105

(-0.46) (0.13)

F41-F43 0.0210 0.0340

(0.18) (0.42)

G45-G47 0.0552 0.108∗

(0.49) (1.74)

H49-H53 0.0633 0.0713

(0.50) (0.90)

I55-I56 -0.0986 0.0119
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Table 19: Regression results: fractional probit regressions on imputed data with share of re-

search personnel as an independent variable (continued)

(-0.77) (0.13)

J58-J63 0.166 0.284∗∗∗

(1.24) (3.69)

K 0.350∗∗ 0.460∗∗∗

(2.32) (4.42)

L68 0.0239 0.0981

(0.14) (0.85)

M69-M74 -0.186 -0.0305

(-1.01) (-0.26)

N77-N82 0.0295 0.0746

(0.23) (1.21)

S951 0.105 0.197

(0.44) (1.12)

Constant -2.233∗∗∗ -2.100∗∗∗ -2.252∗∗∗ -2.110∗∗∗

(-67.86) (-14.56) (-24.76) (-13.69)

Observations 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels
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A.12 Complete case regression analysis results for rres

Table 20: Regression results: fractional probit regressions on complete data with share of

researchers as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rres 0.990∗ 0.669 1.106∗ 1.013∗∗∗

Complete (1.89) (1.50) (1.82) (2.66)

BG -0.676∗∗∗ -0.706∗∗∗

(-3.17) (-3.21)

CY -0.827∗∗∗ -0.848∗∗∗

(-3.81) (-3.88)

CZ -0.258∗ -0.287∗

(-1.68) (-1.94)

DK -0.339∗∗ -0.416∗∗

(-2.14) (-2.57)

ES -0.212 -0.238

(-1.43) (-1.48)

FI -0.373∗∗ -0.443∗∗

(-2.03) (-2.40)

FR -0.110 -0.182

(-0.61) (-1.14)

HR -0.458∗∗ -0.495∗∗

(-2.07) (-2.52)

HU -0.870∗∗∗ -0.842∗∗∗

(-2.74) (-2.82)

IE -0.420∗∗ -0.443∗∗

(-2.35) (-2.47)

IT -0.194 -0.205

(-1.14) (-1.21)

LT 0.177 0.167
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Table 20: Regression results: fractional probit regressions on complete data with share of

researchers as an independent variable (continued)

(1.16) (1.09)

LV -0.290 -0.279

(-1.50) (-1.48)

MT -0.0259 -0.0708

(-0.13) (-0.39)

NL 0.272∗ 0.261∗

(1.82) (1.69)

NO -0.443∗∗ -0.481∗∗∗

(-2.40) (-2.62)

PT -0.264∗ -0.330∗

(-1.84) (-1.92)

RO 0.0167 0.00790

(0.11) (0.05)

SI -1.194∗∗∗ -1.206∗∗∗

(-3.84) (-3.84)

SK 0.335∗∗ 0.300∗

(2.06) (1.91)

C13-C15 -0.236 -0.102

(-1.29) (-0.96)

C16-C18 -0.167 -0.0328

(-1.12) (-0.31)

C19-C23 -0.148 -0.0695

(-0.73) (-0.43)

C24-C25 0.0433 0.150

(0.30) (1.47)

C26 -0.192 -0.135

(-0.96) (-1.05)

C27-C28 -0.0897 -0.0152

(-0.50) (-0.13)

C29-C30 -0.0219 0.0792
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Table 20: Regression results: fractional probit regressions on complete data with share of

researchers as an independent variable (continued)

(-0.14) (0.77)

C31-C33 -0.101 -0.0330

(-0.55) (-0.33)

D35-E39 -0.243∗∗ 0.0864

(-2.01) (0.80)

F41-F43 -0.0613 -0.00823

(-0.49) (-0.10)

G45-G47 -0.0382 0.0895

(-0.33) (1.45)

H49-H53 -0.0751 0.0477

(-0.55) (0.60)

I55-I56 -0.300∗∗ 0.00182

(-2.53) (0.01)

J58-J63 0.131 0.268∗∗∗

(0.88) (3.16)

L68 -0.0836 0.0246

(-0.39) (0.28)

M69-M74 -0.137 -0.0195

(-0.86) (-0.21)

N77-N82 -0.0125 0.0576

(-0.09) (0.86)

S951 -0.521∗ -0.115

(-1.65) (-0.44)

Constant -2.209∗∗∗ -2.073∗∗∗ -2.133∗∗∗ -2.092∗∗∗

(-71.27) (-14.59) (-23.12) (-13.79)

Observations 224 224 224 224

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels

A.13 Multiple imputation regression analysis results results for rres
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Table 21: Regression results: fractional probit regressions on imputed data with share of re-

searchers as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rres 1.366∗ 1.052 1.747∗ 1.315∗∗

(1.68) (1.53) (1.96) (2.07)

BG -0.664∗∗∗ -0.736∗∗∗

(-3.07) (-3.17)

CY -0.670∗∗∗ -0.759∗∗∗

(-3.15) (-3.81)

CZ -0.248 -0.347∗∗

(-1.59) (-2.16)

DE -3.365∗∗∗ -3.579∗∗∗

(-14.01) (-12.03)

DK -0.338∗∗ -0.447∗∗∗

(-2.11) (-2.69)

EL -0.610∗ -0.648∗

(-1.76) (-1.90)

ES -0.136 -0.284∗

(-0.85) (-1.77)

FI -0.409∗∗ -0.480∗∗

(-2.17) (-2.44)

FR -0.0773 -0.201

(-0.44) (-1.27)

HR -0.501∗∗ -0.571∗∗∗

(-2.20) (-2.73)

HU -0.765∗∗∗ -0.871∗∗∗

(-3.09) (-3.80)

IE -0.417∗∗ -0.487∗∗∗

(-2.41) (-2.65)

IS -0.566∗∗ -0.663∗∗∗
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Table 21: Regression results: fractional probit regressions on imputed data with share of re-

searchers as an independent variable (continued)

(-2.15) (-2.88)

IT -0.115 -0.191

(-0.66) (-1.14)

LT 0.256 0.193

(1.45) (1.14)

LU -0.506∗∗ -0.591∗∗∗

(-2.22) (-2.83)

LV -0.166 -0.234

(-0.89) (-1.32)

MK -3.369∗∗∗ -3.479∗∗∗

(-21.23) (-18.35)

MT 0.0409 -0.0543

(0.22) (-0.31)

NL 0.303∗∗ 0.238

(2.01) (1.51)

NO -0.330∗ -0.428∗∗

(-1.67) (-2.22)

PL -0.242 -0.708∗∗∗

(-1.60) (-3.91)

PT -0.258∗ -0.302∗

(-1.77) (-1.74)

RO -0.0428 -0.0831

(-0.26) (-0.48)

SE -0.489∗∗∗ -0.572∗∗∗

(-2.71) (-3.00)

SI -1.200∗∗∗ -1.274∗∗∗

(-3.85) (-3.94)

SK 0.411∗∗ 0.332∗∗

(2.47) (2.12)

TR -0.0144 -0.0729
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Table 21: Regression results: fractional probit regressions on imputed data with share of re-

searchers as an independent variable (continued)

(-0.09) (-0.45)

UK -3.342∗∗∗ -3.548∗∗∗

(-13.86) (-11.96)

C13-C15 -0.0704 -0.0807

(-0.46) (-0.87)

C16-C18 -0.0951 -0.0441

(-0.69) (-0.43)

C19-C23 -0.154 -0.106

(-0.79) (-0.69)

C24-C25 0.0699 0.140

(0.51) (1.46)

C26 -0.232 -0.160

(-1.19) (-1.24)

C27-C28 0.0461 0.0875

(0.30) (0.76)

C29-C30 -0.0285 0.0545

(-0.18) (0.54)

C31-C33 -0.102 -0.0756

(-0.58) (-0.77)

D35-E39 -0.0747 -0.00105

(-0.56) (-0.01)

F41-F43 0.0163 0.0267

(0.14) (0.32)

G45-G47 0.0460 0.0984

(0.41) (1.56)

H49-H53 0.0507 0.0606

(0.41) (0.78)

I55-I56 -0.113 0.00463

(-0.88) (0.05)

J58-J63 0.203 0.308∗∗∗
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Table 21: Regression results: fractional probit regressions on imputed data with share of re-

searchers as an independent variable (continued)

(1.52) (4.00)

K 0.370∗∗ 0.480∗∗∗

(2.42) (4.64)

L68 0.0183 0.0915

(0.11) (0.79)

M69-M74 -0.107 0.0100

(-0.64) (0.09)

N77-N82 0.0212 0.0671

(0.17) (1.09)

S951 0.127 0.220

(0.53) (1.23)

Constant -2.212∗∗∗ -2.086∗∗∗ -2.239∗∗∗ -2.101∗∗∗

(-70.84) (-14.27) (-24.96) (-13.38)

Observations 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels
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A.14 Complete case regression analysis results for rsup

Table 22: Regression results: fractional probit regressions on complete data with share of R&D

support personnel as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rsup 4.584∗∗∗ 2.324∗∗∗ 6.548∗∗∗ 4.302∗∗∗

Complete (3.71) (2.60) (3.52) (3.51)

BG -0.726∗∗∗ -0.722∗∗∗

(-3.02) (-2.92)

CY -0.815∗∗∗ -0.827∗∗∗

(-3.85) (-3.93)

CZ -0.262∗ -0.291∗∗

(-1.77) (-2.06)

DK -0.349∗∗ -0.415∗∗∗

(-2.28) (-2.63)

ES -0.213 -0.250

(-1.50) (-1.61)

FI -0.380∗∗ -0.449∗∗

(-2.10) (-2.44)

FR -0.110 -0.169

(-0.62) (-1.08)

HR -0.453∗∗ -0.480∗∗∗

(-2.11) (-2.59)

HU -0.860∗∗∗ -0.786∗∗∗

(-2.74) (-2.69)

IE -0.410∗∗ -0.407∗∗

(-2.38) (-2.39)

IT -0.214 -0.234

(-1.33) (-1.49)

LT 0.186 0.193
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Table 22: Regression results: fractional probit regressions on complete data with share of R&D

support personnel as an independent variable (continued)

(1.28) (1.34)

LV -0.289 -0.261

(-1.52) (-1.45)

MT -0.0287 -0.0790

(-0.15) (-0.45)

NL 0.237 0.211

(1.61) (1.43)

NO -0.447∗∗ -0.482∗∗∗

(-2.53) (-2.82)

PT -0.289∗∗ -0.353∗∗

(-2.06) (-2.14)

RO 0.0310 0.0646

(0.21) (0.42)

SI -1.202∗∗∗ -1.213∗∗∗

(-3.87) (-3.91)

SK 0.300∗ 0.249∗

(1.90) (1.65)

C13-C15 -0.260 -0.126

(-1.42) (-1.16)

C16-C18 -0.160 -0.0417

(-1.06) (-0.42)

C19-C23 -0.271 -0.142

(-1.37) (-0.96)

C24-C25 0.0207 0.132

(0.15) (1.34)

C26 -0.419∗∗ -0.270∗∗

(-2.21) (-2.43)

C27-C28 -0.246 -0.138

(-1.44) (-1.10)

C29-C30 -0.0797 0.0344
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Table 22: Regression results: fractional probit regressions on complete data with share of R&D

support personnel as an independent variable (continued)

(-0.50) (0.34)

C31-C33 -0.124 -0.0515

(-0.72) (-0.52)

D35-E39 -0.235∗ 0.0386

(-1.89) (0.34)

F41-F43 -0.0463 0.00867

(-0.37) (0.11)

G45-G47 -0.0172 0.105∗

(-0.15) (1.74)

H49-H53 -0.0537 0.0587

(-0.40) (0.73)

I55-I56 -0.275∗∗ 0.0131

(-2.33) (0.08)

J58-J63 0.0358 0.205∗∗

(0.26) (2.48)

L68 -0.0601 0.0415

(-0.28) (0.57)

M69-M74 -0.267 -0.0868

(-1.48) (-0.82)

N77-N82 0.00775 0.0680

(0.06) (1.01)

S951 -0.508 -0.113

(-1.63) (-0.43)

Constant -2.254∗∗∗ -2.087∗∗∗ -2.158∗∗∗ -2.100∗∗∗

(-70.11) (-15.60) (-23.55) (-14.72)

Observations 222 222 222 222

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels
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A.15 Multiple imputation regression analysis results results for rsup

Table 23: Regression results: fractional probit regressions on imputed data with share of R&D

support personnel as an independent variable

I II III IV

Base Country Industry All

model controls controls controls

rsup 6.225∗∗∗ 3.838∗∗∗ 9.106∗∗∗ 5.521∗∗∗

(3.81) (2.80) (4.38) (3.67)

BG -0.642∗∗∗ -0.684∗∗∗

(-3.05) (-3.06)

CY -0.650∗∗∗ -0.727∗∗∗

(-3.18) (-3.81)

CZ -0.256∗ -0.353∗∗

(-1.77) (-2.32)

DE -3.311∗∗∗ -3.481∗∗∗

(-13.78) (-12.05)

DK -0.355∗∗ -0.446∗∗∗

(-2.37) (-2.77)

EL -0.629∗ -0.633∗

(-1.89) (-1.89)

ES -0.142 -0.294∗

(-0.96) (-1.93)

FI -0.420∗∗ -0.498∗∗∗

(-2.29) (-2.59)

FR -0.0781 -0.187

(-0.47) (-1.22)

HR -0.497∗∗ -0.542∗∗∗

(-2.27) (-2.79)

HU -0.737∗∗∗ -0.788∗∗∗

(-3.06) (-3.53)

IE -0.386∗∗ -0.429∗∗
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Table 23: Regression results: fractional probit regressions on imputed data with share of R&D

support personnel as an independent variable (continued)

(-2.37) (-2.49)

IS -0.566∗∗ -0.653∗∗∗

(-2.20) (-2.88)

IT -0.148 -0.229

(-0.93) (-1.48)

LT 0.268∗ 0.220

(1.65) (1.40)

LU -0.494∗∗ -0.573∗∗∗

(-2.23) (-2.77)

LV -0.157 -0.208

(-0.88) (-1.24)

MK -3.370∗∗∗ -3.444∗∗∗

(-22.27) (-19.04)

MT 0.0312 -0.0685

(0.18) (-0.41)

NL 0.244∗ 0.176

(1.69) (1.18)

NO -0.338∗ -0.434∗∗

(-1.84) (-2.44)

PL -0.246∗ -0.673∗∗∗

(-1.68) (-3.64)

PT -0.299∗∗ -0.323∗∗

(-2.19) (-1.96)

RO -0.0139 -0.0135

(-0.09) (-0.08)

SE -0.477∗∗∗ -0.540∗∗∗

(-2.72) (-2.92)

SI -1.216∗∗∗ -1.274∗∗∗

(-3.91) (-4.02)

SK 0.358∗∗ 0.258∗
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Table 23: Regression results: fractional probit regressions on imputed data with share of R&D

support personnel as an independent variable (continued)

(2.30) (1.70)

TR -0.0195 -0.0673

(-0.13) (-0.43)

UK -3.318∗∗∗ -3.492∗∗∗

(-13.74) (-12.00)

C13-C15 -0.112 -0.106

(-0.71) (-1.10)

C16-C18 -0.0898 -0.0458

(-0.62) (-0.47)

C19-C23 -0.307 -0.190

(-1.57) (-1.32)

C24-C25 0.0496 0.122

(0.35) (1.29)

C26 -0.531∗∗∗ -0.324∗∗∗

(-2.66) (-2.71)

C27-C28 -0.174 -0.0587

(-1.05) (-0.44)

C29-C30 -0.130 -0.00396

(-0.77) (-0.04)

C31-C33 -0.127 -0.0917

(-0.73) (-0.91)

D35-E39 -0.0467 0.0148

(-0.34) (0.17)

F41-F43 0.0544 0.0552

(0.44) (0.67)

G45-G47 0.0804 0.122∗

(0.68) (1.93)

H49-H53 0.0821 0.0843

(0.62) (1.01)

I55-I56 -0.0645 0.0279
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Table 23: Regression results: fractional probit regressions on imputed data with share of R&D

support personnel as an independent variable (continued)

(-0.46) (0.28)

J58-J63 0.0846 0.234∗∗∗

(0.63) (2.96)

K 0.285∗∗ 0.423∗∗∗

(1.97) (4.15)

L68 0.0341 0.103

(0.20) (0.89)

M69-M74 -0.270 -0.0700

(-1.40) (-0.59)

N77-N82 0.0593 0.0871

(0.45) (1.34)

S951 0.102 0.184

(0.44) (1.13)

Constant -2.273∗∗∗ -2.110∗∗∗ -2.279∗∗∗ -2.118∗∗∗

(-68.83) (-15.78) (-23.31) (-14.35)

Observations 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 and BE are chosen as base levels
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A.16 Complete case regression analysis results for models with re-

search intensity proxies and CRM variable

Table 24: Regression results: fractional probit regressions on complete data with research poxies

and CRM variable

I II III

R&D personnel Researchers R&D support

model model model

rper 0.332

(0.94)

rres 0.225

(0.37)

rsup 1.606∗

(1.71)

d 0.487∗∗ 0.524∗∗ 0.440∗∗

(2.29) (2.48) (1.98)

BG -0.576∗∗ -0.522∗∗ -0.582∗∗

(-2.25) (-2.32) (-2.29)

CY -0.696∗∗∗ -0.697∗∗∗ -0.700∗∗∗

(-3.10) (-3.10) (-3.14)

CZ -0.144 -0.139 -0.158

(-0.83) (-0.81) (-0.92)

DK -0.285∗ -0.281 -0.296∗

(-1.65) (-1.63) (-1.74)

ES -0.139 -0.140 -0.147

(-0.87) (-0.87) (-0.93)

FI -0.354∗ -0.354∗ -0.360∗

(-1.85) (-1.86) (-1.89)

FR -0.0176 -0.00982 -0.0260

(-0.09) (-0.05) (-0.14)

HR -0.346 -0.344 -0.354
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Table 24: Regression results: fractional probit regressions on complete data with research poxies

and CRM variable (continued)

(-1.55) (-1.55) (-1.60)

HU -0.692∗∗ -0.684∗∗ -0.704∗∗

(-2.12) (-2.10) (-2.16)

IE -0.368∗ -0.372∗∗ -0.367∗∗

(-1.95) (-1.97) (-1.98)

IT -0.0950 -0.0905 -0.116

(-0.53) (-0.50) (-0.65)

LT 0.315∗ 0.319∗ 0.305∗

(1.86) (1.89) (1.82)

LV -0.141 -0.136 -0.155

(-0.68) (-0.66) (-0.75)

MT 0.0759 0.0787 0.0649

(0.38) (0.39) (0.33)

NL 0.372∗∗ 0.381∗∗ 0.340∗∗

(2.30) (2.36) (2.07)

NO -0.427∗∗ -0.416∗∗ -0.432∗∗

(-2.15) (-2.11) (-2.24)

RO 0.128 0.128 0.126

(0.76) (0.75) (0.76)

SI -1.023∗∗∗ -1.016∗∗∗ -1.043∗∗∗

(-3.19) (-3.18) (-3.24)

SK 0.404∗∗ 0.415∗∗ 0.378∗∗

(2.31) (2.39) (2.18)

Constant -2.293∗∗∗ -2.301∗∗∗ -2.280∗∗∗

(-13.69) (-13.80) (-13.65)

Observations 214 215 213

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level
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A.17 Multiple imputation regression analysis results results for mod-

els with research intensity proxies and CRM variable

Table 25: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable

I II III

R&D personnel Researchers R&D support

model model model

rper 0.562

(1.22)

rres 0.410

(0.53)

rsup 3.041∗∗

(2.35)

d 0.715∗∗∗ 0.762∗∗∗ 0.641∗∗∗

(3.63) (3.78) (3.48)

BG -0.485∗∗ -0.485∗∗ -0.487∗∗

(-2.15) (-2.16) (-2.20)

CY -0.545∗∗∗ -0.550∗∗∗ -0.543∗∗∗

(-2.70) (-2.72) (-2.74)

CZ -0.104 -0.103 -0.122

(-0.63) (-0.62) (-0.77)

DE -3.436∗∗∗ -3.450∗∗∗ -3.417∗∗∗

(-13.59) (-13.70) (-13.06)

DK -0.265 -0.258 -0.285∗

(-1.55) (-1.52) (-1.74)

EL -0.615∗ -0.625∗ -0.604∗

(-1.66) (-1.67) (-1.69)

ES -0.0930 -0.0939 -0.0949

(-0.61) (-0.61) (-0.64)

FI -0.380∗∗ -0.381∗∗ -0.391∗∗
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Table 25: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable (continued)

(-2.02) (-2.04) (-2.11)

FR 0.0259 0.0346 0.0159

(0.15) (0.20) (0.10)

HR -0.372 -0.368 -0.381∗

(-1.60) (-1.60) (-1.68)

HU -0.528∗∗ -0.527∗∗ -0.532∗∗

(-2.14) (-2.14) (-2.20)

IE -0.333∗ -0.342∗ -0.319∗

(-1.85) (-1.90) (-1.85)

IS -0.519∗∗ -0.523∗∗ -0.521∗∗

(-1.99) (-2.01) (-2.03)

IT -0.00988 -0.00298 -0.0410

(-0.06) (-0.02) (-0.25)

LT 0.453∗∗ 0.456∗∗ 0.442∗∗

(2.42) (2.43) (2.51)

LU -0.426∗ -0.428∗ -0.423∗

(-1.91) (-1.92) (-1.93)

LV 0.0182 0.0198 0.00470

(0.09) (0.10) (0.03)

MK -3.218∗∗∗ -3.216∗∗∗ -3.229∗∗∗

(-18.38) (-18.34) (-19.55)

MT 0.170 0.173 0.157

(0.95) (0.96) (0.90)

NL 0.431∗∗∗ 0.442∗∗∗ 0.379∗∗

(2.77) (2.87) (2.49)

NO -0.315 -0.300 -0.327∗

(-1.58) (-1.52) (-1.74)

PL -0.305∗ -0.313∗∗ -0.272∗

(-1.95) (-2.00) (-1.80)

PT -0.274∗ -0.272∗ -0.285∗

76



Table 25: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable (continued)

(-1.69) (-1.66) (-1.83)

RO 0.120 0.115 0.129

(0.69) (0.66) (0.78)

SE -0.457∗∗ -0.461∗∗ -0.451∗∗

(-2.37) (-2.39) (-2.40)

SI -1.038∗∗∗ -1.033∗∗∗ -1.064∗∗∗

(-3.21) (-3.19) (-3.31)

SK 0.524∗∗∗ 0.538∗∗∗ 0.467∗∗∗

(3.06) (3.17) (2.87)

TR 0.0441 0.0433 0.0375

(0.27) (0.27) (0.24)

UK -3.444∗∗∗ -3.459∗∗∗ -3.411∗∗∗

(-13.99) (-14.10) (-14.18)

Constant -2.409∗∗∗ -2.416∗∗∗ -2.395∗∗∗

(-14.62) (-14.64) (-15.37)

Observations 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level
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A.18 Multiple imputation regression analysis results results for mod-

els with research intensity proxies and CRM variable for man-

ufacturing industries

Table 26: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for manufacturing industries

I II III

All Low-tech High-tech

manufacturing manufacturing manufacturing

rsup 4.488∗∗∗ 3.200 7.206∗∗∗

(2.77) (0.66) (3.13)

d -0.776 -0.651 -1.337

(-1.41) (-0.87) (-1.29)

BG -1.222∗∗∗ -0.794∗∗ -4.560∗∗∗

(-3.50) (-2.29) (-10.74)

CY -4.216∗∗∗ -4.037∗∗∗ -4.612∗∗∗

(-16.02) (-13.17) (-9.70)

CZ -0.682∗∗∗ -0.408 -1.115∗∗∗

(-2.71) (-1.49) (-2.77)

DK -0.643∗∗∗ -0.468∗∗∗ -0.927∗∗∗

(-3.25) (-2.78) (-3.03)

EL -0.821∗∗ -3.930∗∗∗ -0.893∗

(-2.07) (-16.98) (-1.78)

ES -0.650∗∗∗ -0.870∗∗∗

(-3.36) (-2.83)

FI -4.134∗∗∗ -3.900∗∗∗ -4.573∗∗∗

(-18.11) (-19.28) (-13.66)

FR -0.643∗∗∗ -0.557∗∗ -0.875∗∗

(-2.82) (-2.46) (-2.49)

HR -4.119∗∗∗ -3.992∗∗∗ -4.426∗∗∗

(-18.30) (-13.51) (-13.67)
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Table 26: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for manufacturing industries (continued)

HU -1.287∗∗∗ -4.039∗∗∗ -1.418∗∗∗

(-3.38) (-13.27) (-2.60)

IE -0.771∗∗∗ -0.535∗∗ -1.168∗∗∗

(-3.31) (-2.20) (-3.02)

IS -4.146∗∗∗ -4.013∗∗∗ -4.376∗∗∗

(-17.01) (-13.60) (-13.05)

IT -0.607∗∗∗ -0.624∗∗∗ -0.758∗∗

(-2.58) (-3.25) (-1.98)

LT -0.253 -0.0903 -0.550

(-1.00) (-0.33) (-1.23)

LU -4.079∗∗∗ -3.962∗∗∗ -4.238∗∗∗

(-16.99) (-13.54) (-14.04)

LV -0.880∗∗∗ -0.480 -4.656∗∗∗

(-2.81) (-1.39) (-10.96)

MK -4.188∗∗∗ -3.993∗∗∗ -4.621∗∗∗

(-16.57) (-12.98) (-10.64)

MT -0.515 -0.223 -4.995∗∗∗

(-1.46) (-0.83) (-8.86)

NL -0.277 -0.0948 -0.681∗

(-1.17) (-0.49) (-1.67)

NO -0.994∗∗∗ -0.559∗ -4.406∗∗∗

(-2.85) (-1.86) (-15.56)

PT -0.524∗∗∗ -0.655∗∗

(-2.76) (-2.41)

RO -0.319 -0.171 -0.532

(-1.42) (-0.79) (-1.42)

SE -1.203∗∗∗ -0.902∗∗∗ -4.348∗∗∗

(-3.55) (-2.77) (-15.02)

SI -4.274∗∗∗ -4.027∗∗∗ -4.851∗∗∗

(-16.59) (-15.59) (-11.11)
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Table 26: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for manufacturing industries (continued)

SK -0.188 -0.0713 -0.420

(-0.86) (-0.47) (-1.14)

TR -0.292 -0.205 -0.392

(-1.50) (-1.40) (-1.47)

Constant -1.549∗∗∗ -1.705∗∗∗ -1.223∗∗

(-5.43) (-4.98) (-2.24)

Observations 152 81 71

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level
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A.19 Multiple imputation regression analysis results results for mod-

els with research intensity proxies and CRM variable for ser-

vice industries

Table 27: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for service industries

I II III

All knowledge- Less knowledge- Knowledge-

based services intensive services intensive services

rsup 3.698∗ 10.70∗ 1.862

(1.82) (1.89) (1.01)

d 0.729∗∗∗ 0.238 0.985∗∗∗

(3.48) (0.43) (4.55)

BG -0.237 -0.401 -0.182

(-1.09) (-1.21) (-0.56)

CY -0.272∗ -0.230 -0.412

(-1.77) (-1.19) (-1.54)

CZ 0.0182 -0.119 0.0828

(0.16) (-0.55) (0.75)

DE -3.395∗∗∗ -3.463∗∗∗

(-10.45) (-9.16)

DK -0.216 -0.285 -0.201

(-1.49) (-0.93) (-1.48)

EL -3.547∗∗∗ -3.621∗∗∗ -3.343∗∗∗

(-11.77) (-9.13) (-14.28)

ES 0.0543 0.0000345 0.0168

(0.60) (0.00) (0.17)

FI -0.170 -0.325 -0.109

(-1.26) (-1.41) (-0.64)

FR 0.206∗ -0.0498 0.295∗∗

(1.66) (-0.32) (2.40)
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Table 27: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for service industries (continued)

HR -0.0212 -0.175 0.0735

(-0.15) (-0.78) (0.36)

HU -0.331 -3.228∗∗∗ -0.0782

(-1.22) (-9.32) (-0.36)

IE -0.157 -0.180 -0.163

(-0.97) (-0.95) (-0.58)

IS -0.128 -0.566∗ 0.0304

(-0.64) (-1.68) (0.15)

IT 0.136 -0.0439 0.195∗∗

(1.35) (-0.28) (2.01)

LT 0.605∗∗∗ 0.549∗∗ 0.429∗∗∗

(3.67) (2.03) (3.20)

LU -0.179 -0.279 -0.101

(-1.06) (-0.91) (-0.53)

LV 0.298∗∗ 0.0346 0.527∗∗∗

(2.00) (0.14) (4.26)

MK -3.232∗∗∗ -3.326∗∗∗ -3.442∗∗∗

(-13.50) (-10.27) (-18.72)

MT 0.339∗∗∗ 0.225 0.410∗∗∗

(3.14) (1.36) (3.13)

NL 0.607∗∗∗ 0.470∗∗ 0.640∗∗∗

(6.77) (2.46) (7.98)

NO -0.0540 -0.0128 -0.0806

(-0.35) (-0.06) (-0.68)

PL -0.155 -0.146

(-1.51) (-1.59)

RO 0.144 -0.312 0.343∗∗

(0.92) (-0.98) (2.37)

SE -0.150 -0.0449 -0.315∗

(-0.97) (-0.19) (-1.77)
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Table 27: Regression results: fractional probit regressions on imputed data with research poxies

and CRM variable for service industries (continued)

SI -0.761∗∗ -0.629∗ -3.431∗∗∗

(-2.39) (-1.84) (-21.46)

SK 0.701∗∗∗ 0.499∗∗ 0.811∗∗∗

(5.90) (2.59) (6.04)

TR 0.181 0.0171 0.274∗

(1.51) (0.09) (1.70)

UK -3.401∗∗∗ -3.449∗∗∗

(-12.05) (-10.40)

Constant -2.573∗∗∗ -2.345∗∗∗ -2.698∗∗∗

(-23.41) (-8.96) (-27.33)

Observations 199 105 94

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level
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A.20 Robustness checks

Table 28: Regression results: robustness checks

I II III IV V

A.Surface Turnover E-comm Sysadmin All

controls controls controls controls controls

rsup 3.277∗∗∗ 3.235∗∗∗ 3.783∗∗∗ 2.999∗∗ 3.981∗∗

(2.68) (2.72) (3.25) (2.01) (2.53)

d 0.585∗∗∗ 0.581∗∗∗ 0.285 0.540∗∗∗ 0.310

(3.02) (2.96) (1.34) (2.88) (1.45)

A.Surface -18E-7 703E-9

(-0.17) (0.07)

Turnover 0.000120 0.0000710

(0.32) (0.19)

E-comm 0.00768∗∗ 0.00787∗∗

(2.22) (2.30)

Sysadmin 0.0822 -0.0711

(0.33) (-0.29)

BG -0.504∗∗ -0.502∗∗ -0.391∗ -0.500∗∗ -0.390∗

(-2.30) (-2.29) (-1.69) (-2.26) (-1.70)

CY -0.553∗∗∗ -0.552∗∗∗ -0.465∗∗ -0.549∗∗∗ -0.466∗∗

(-2.79) (-2.79) (-2.29) (-2.76) (-2.31)

CZ -0.136 -0.134 -0.182 -0.146 -0.173

(-0.85) (-0.85) (-1.11) (-0.90) (-1.05)

DE -3.365∗∗∗ -3.367∗∗∗ -3.449∗∗∗ -3.388∗∗∗ -3.429∗∗∗

(-13.52) (-13.60) (-13.85) (-13.15) (-13.17)

DK -0.290∗ -0.291∗ -0.318∗ -0.286∗ -0.320∗

(-1.78) (-1.80) (-1.91) (-1.74) (-1.91)

EL -0.639∗ -0.639∗ -0.459 -0.637∗ -0.456

(-1.87) (-1.87) (-1.31) (-1.87) (-1.31)

ES -0.106 -0.110 -0.0715 -0.104 -0.0755

(-0.70) (-0.75) (-0.47) (-0.71) (-0.49)
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Table 28: Regression results: robustness checks (continued)

FI -0.393∗∗ -0.392∗∗ -0.347∗ -0.392∗∗ -0.346∗

(-2.13) (-2.13) (-1.77) (-2.12) (-1.77)

FR 0.00912 -0.00145 0.0251 0.00698 0.0110

(0.05) (-0.01) (0.15) (0.04) (0.06)

HR -0.397∗ -0.395∗ -0.446∗ -0.399∗ -0.445∗

(-1.74) (-1.73) (-1.94) (-1.73) (-1.95)

HU -0.558∗∗ -0.558∗∗ -0.536∗∗ -0.577∗∗ -0.520∗∗

(-2.33) (-2.33) (-2.28) (-2.39) (-2.18)

IE -0.325∗ -0.322∗ -0.361∗∗ -0.330∗ -0.355∗∗

(-1.90) (-1.89) (-2.01) (-1.89) (-1.99)

IS -0.520∗∗ -0.522∗∗ -0.515∗∗ -0.522∗∗ -0.515∗∗

(-2.09) (-2.10) (-2.06) (-2.10) (-2.08)

IT -0.0501 -0.0583 0.0666 -0.0489 0.0570

(-0.30) (-0.36) (0.38) (-0.30) (0.32)

LT 0.421∗∗ 0.424∗∗ 0.352∗∗ 0.417∗∗ 0.355∗∗

(2.38) (2.36) (2.08) (2.41) (2.15)

LU -0.449∗∗ -0.451∗∗ -0.378∗ -0.451∗∗ -0.378∗

(-2.04) (-2.06) (-1.70) (-2.04) (-1.70)

LV -0.0259 -0.0243 0.0495 -0.0312 0.0552

(-0.14) (-0.13) (0.26) (-0.17) (0.29)

MK -3.280∗∗∗ -3.280∗∗∗ -3.162∗∗∗ -3.288∗∗∗ -3.154∗∗∗

(-18.69) (-18.92) (-16.59) (-18.39) (-16.55)

MT 0.133 0.134 0.151 0.137 0.149

(0.76) (0.77) (0.85) (0.78) (0.84)

NL 0.363∗∗ 0.361∗∗ 0.314∗∗ 0.354∗∗ 0.317∗∗

(2.37) (2.37) (1.99) (2.32) (2.01)

NO -0.337∗ -0.334∗ -0.445∗∗ -0.338∗ -0.441∗∗

(-1.82) (-1.81) (-2.34) (-1.81) (-2.35)

PL -0.313∗∗ -0.314∗∗ -0.347∗∗ -0.325∗∗ -0.340∗∗

(-2.00) (-2.03) (-2.09) (-2.03) (-1.99)

PT -0.302∗ -0.301∗ -0.423∗∗∗ -0.293∗ -0.429∗∗∗
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Table 28: Regression results: robustness checks (continued)

(-1.92) (-1.91) (-2.63) (-1.88) (-2.69)

RO 0.113 0.115 0.221 0.129 0.211

(0.69) (0.70) (1.24) (0.75) (1.17)

SE -0.432∗∗ -0.432∗∗ -0.442∗∗ -0.430∗∗ -0.443∗∗

(-2.31) (-2.32) (-2.35) (-2.29) (-2.37)

SI -1.090∗∗∗ -1.088∗∗∗ -1.082∗∗∗ -1.091∗∗∗ -1.081∗∗∗

(-3.37) (-3.37) (-3.35) (-3.37) (-3.35)

SK 0.446∗∗∗ 0.445∗∗∗ 0.547∗∗∗ 0.456∗∗∗ 0.540∗∗∗

(2.80) (2.74) (3.23) (2.80) (3.15)

TR -0.00319 -0.00292 0.113 -0.00303 0.118

(-0.02) (-0.02) (0.66) (-0.02) (0.70)

UK -3.419∗∗∗ -3.415∗∗∗ -3.337∗∗∗ -3.432∗∗∗ -3.322∗∗∗

(-14.03) (-13.99) (-13.27) (-13.54) (-12.71)

Constant -2.370∗∗∗ -2.371∗∗∗ -2.464∗∗∗ -2.380∗∗∗ -2.458∗∗∗

(-15.16) (-15.08) (-14.51) (-14.61) (-14.41)

Observations 351 351 351 351 351

z statistics in parentheses; Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C10-C12 is chosen as a base level; See Appendix A.19 for the full table
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